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Summary 
Version 5.3 is the first major release of Kermit-20 in two decades and represents approximately 
a year of development for the following functionality: 

• Updates Kermit to version 7 of Tops-20. 
• Adds DECnet NRT transport to Tops-10, Tops-20 and Ultrix hosts. 
• Adds pseudo-terminal support. 
• Support for batch stream execution, including extensive testing. 
• Microsecond timing (limited by Tops-20) 
• Efficiency Enhancements 
• Symbolic (C) escape sequences and enhanced parsing 
• New and Enhanced commands 
• Revamped and enhanced macro facility 

A large amount of restructuring has been done with an eye towards future development, 
instrumentation, debugging and overall robustness.  The following is a brief table of changes. 
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Restructuring 
At 201 pages of source code, Kermit-20 exceeded the capability of the Tops-20 assembler 
(MACRO-20), resulting in MCRNEC errors, effectively preventing any possibility of further 
development.  As a result, the source code was split up and the memory layout was changed 
and enhanced. 

Despite the large amount of changes, this was in no way a complete rewrite of the original 
source as it nor largely exists in separate modules, typically having been enhanced.  Apart from 
the new functionality, most changes happened because the increased demands being put on 
the code caused ‘edge case’ errors to be discovered.  In other words, effectivity supporting 
megabaud network transport sometimes turned out to be qualitatively different than kilobaud 
transport. 

Source Code 

The following are the new source modules.  Pages are Tops-20 and consist 512 of words, a word 
being thirty-six bits.  Characters are packed 5 characters per word and are different from eight 
bit bytes.  This totals to approximately 1.4 megabytes of source code which represents a 366% 
increase in size. 

Item Name Pages Characters Summary 
1 K20DSP 37 93,795 Display module; show commands 
2 K20EDT 21 51,343 Edit history 
3 K20HLP 57 145,533 Built-in help 
4 K20IOC 57 145,758 INPUT/OUTPUT/TRANSMIT commands 
5 K20MAC 31 77,731 Kermit Macros 
6 K20MIT 76 194,250 Protocol handling 
7 K20NET 57 144,186 DECnet, physical and pseudo-terminals 
8 K20PAR 64 162,959 Parsing and some execution 
9 K20PDC 11 27,080 Packet display and decoding 

10 K20SRV 57 144,035 Server commands and support 
11 K20SUB 53 133,960 Miscellaneous subroutines 
12 K20TIM 41 103,131 Microsecond timing 
13 K20UNV 18 44,553 INPUT/OUTPUT/TRANSMIT commands 

Memory Layout 

Kermit-20 was one of the first two programs to implement the KERMIT protocol, which was 
done under version 5 of Tops-20.  This limited the address space to a single section of 512 
pages.  In Tops-20 version 7, extended memory support was completed, resulting in an increase 
to 32 sections of 512 pages. 

This increased virtual memory was used to move certain items out of section zero, in order to 
increase cache performance, make buffer management easier, prevent symbol table overwrite 
and to implement guard pages to catch off by one errors.  The memory was also write-
protected to catch straw stores. 



Using MACRO program sections (.PSECT’s) and Program Data Vectors (PDV’s), section one was 
created to contain the symbol table, all help text and most program static text, such as all 
keywords, switches and guide words.  It is very difficult for Kermit, which, with a single small 
exception, runs exclusively in section zero, to smash these. 

Batch Enhancements 
Previous versions of Kermit-20 were not Batch compliant as they did not properly handle the 
lack of Control-C capability, use compliant error signaling (I.E., ESOUT%) and modified various 
terminals in a manner incompatible with Batch, even when the local terminal was not being 
used for transfer. 

Regression and Functional Testing 

Remediation allowed extensive testing scripts to be run.  While the Tops-20 Batch control 
language is not sufficiently powerful to replicate the functionality found in C-Kermit scripting, it 
is more than strong enough to write functional and regression testing scripts.  High level 
explanations of these control files may be found in KERMIT-20-TESTING-BATTERY.docx and are 
summarized as follows: 

1. K20NUL: Basic Kermit-20 Server functional checkout 
2. K20NUP: Basic Kermit-20 Server functional checking using PUT 
3. K20PTY: Kermit-20 Server Transfer additional and post transfer checks 
4. K20NRV: Kermit-20 Server functions via Tops-20 DECnet NRT to local host 
5. K20NRT: Kermit-20 Server functions via Tops-20 DECnet NRT to remote host 
6. K20NOL: Basic regression test against Kermit-20 4.2(174) [2-May-85] 
7. K20POL: Regression test against Kermit-20 4.2(174) [2-May-85] using GET 
8. K20PNW: Regression test against Kermit-20 4.2(174) [2-May-85] using PUT 
9. K20NUR: Basic Kermit-20 Server functional checkout with parity 
10. K20POR: Regression test against Kermit-20 4.2(174) [2-May-85] with parity 
11. K20B8T: Kermit-20 Server 8-bit file transfer and post transfer checks 
12. K20B8P: Kermit-20 Server 8-bit file transfer with parity and post transfer checks 
13. K20B8A: Kermit-20 Server terminal 8-bit file transfer with parity and transfer checks 
14. K20DPD: Kermit-20 Packet Decoding Example 
15. K20TCP: Kermit-20 Transmit/Capture Testing via pseudo-terminal 
16. K20TCN: Kermit-20 Transmit/Capture Testing via DECnet NRT 
17. K10NRT: Kermit-10 Regression Tests via DECnet NRT 
18. K10NRP: Kermit-10 Parity Regression Tests via DECnet NRT 

Extensive regression testing was done against a version of Kermit-20 from 1985 as well as 
Kermit-20 for Tops-10 (see items 17 and 18). 

C-Kermit was tested separately using Mac OSX; remarkably, while there are a very large 
number of C-Kermit scripts, none of them appear to be for basic checkout and regression 
testing. 



Testing Limitations 

The testing control and resulting log files are provided for reference purposes.  As these are 
user specific, it should not be assumed that they will execute correctly without local 
modifications.  Such self-configuration is not possible using the Tops-20 Batch control language. 

There are no control files for C-Kermit as no Ultrix host was available for testing on HECnet at 
the time of writing. 

It was not possible to test Kermit-20 5.3 on an actual KL10 based DECSYSTEM-20 as these are 
largely museum pieces which would have involved travel to use. 

Kermit-20 5.3 does not run on KS based systems and thus could not be tested against any, as 
these are limited to Tops-20 4.2.  It is possible to upgrade Tops-20 to version 5 on a KS10, but 
these sources are not available.  Were this to be done, then Kermit-20 5.3 could probably be 
backported to support this. 

Kermit-20 5.3 was not tested against any Systems Concepts hardware as none was available for 
testing on HECnet. 

Kermit-20 5.3 was not testing against any XKL system as none was available and the version of 
Tops-20 which runs on XKL systems does not support DECnet. 

Kermit-20 5.3 does not run on TENEX nor has any version of Kermit-20 ever run on TENEX. 

Enhanced Debugging Logging 
Previously, Kermit-20 logging was limited to the second and displayed the actual characters 
going over the wire.  Unfortunately, at megabaud and higher speeds, a second is not sufficiently 
granular and a number of messages can happen in that time. 

Further, unless one is intimately familiar with the Kermit protocol itself, puzzling out what the 
characters actually mean can be problematic.  Logging was therefore enhanced to provide time 
of day to the millisecond and a breakout of what is being done, viz: 
S,31-Mar-2023 19:30:58.411, type: G, seq: 0, len: 4, Blk: 0, Generic, Print Working Directory 
R,31-Mar-2023 19:30:58.413, type: Y, seq: 0, len: 4, Blk: 47, Ack(GA), STAR:<KERMIT.K20MIT> 
S,31-Mar-2023 19:30:58.422, type: G, seq: 0, len: 4, Blk: 47, Generic, Server Status Query 
R,31-Mar-2023 19:30:58.425, type: X, seq: 0, len: 4, Blk: 29, Text: (null) 
S,31-Mar-2023 19:30:58.425, type: Y, seq: 0, len: 3, Blk: 29, Acknowledged packet type "X" 
R,31-Mar-2023 19:30:58.427, type: D, seq: 1, len: 3, Blk: 33, Data: #M#J Maximum number of 

characters in packet:  94 received: 94 se 

Packet decoding can be invoked by SET DEBUG PACKETS /DECODE.  This is particularly useful 
when trying to understand negotiations, such as: 
R,31-Mar-2023 19:30:58.753, type: I, seq: 0, len: 3, Blk: 32, Initialization 
    Params: 10, MaxL: 94, TimO: 18, Npad: 0, PadC: ^@, EOL: ^M, Qctl: #, Qbin: Yes, ChkT: 6-

bit, Rept: ~, Long: Available 
S,31-Mar-2023 19:30:58.753, type: Y, seq: 0, len: 13, Blk: 32, Initialization Acknowledgement 
    Params: 10, MaxL: 94, TimO: 20, Npad: 0, PadC: ^@, EOL: ^M, Qctl: #, Qbin: Yes, ChkT: 6-

bit, Rept: ~, Long: Available 
R,31-Mar-2023 19:30:58.756, type: R, seq: 0, len: 13, Blk: 5, Receive: NUL: 
S,31-Mar-2023 19:30:58.756, type: S, seq: 0, len: 13, Blk: 5, Send Initiation 



    Params: 10, MaxL: 94, TimO: 18, Npad: 0, PadC: ^@, EOL: ^M, Qctl: #, Qbin: Yes, ChkT: 6-
bit, Rept: ~, Long: Available 

R,31-Mar-2023 19:30:58.758, type: Y, seq: 0, len: 13, Blk: 50, Send Initiation Acknowledgement 
    Params: 10, MaxL: 94, TimO: 20, Npad: 0, PadC: ^@, EOL: ^M, Qctl: #, Qbin: Yes, ChkT: 6-

bit, Rept: ~, Long: Available 
S,31-Mar-2023 19:30:58.758, type: F, seq: 0, len: 7, Blk: 50, File: NUL: 
R,31-Mar-2023 19:30:58.759, type: Y, seq: 1, len: 7, Blk: 31, Acknowledged packet type "F" 
S,31-Mar-2023 19:30:58.759, type: Z, seq: 1, len: 3, Blk: 31, End of File 
R,31-Mar-2023 19:30:58.761, type: Y, seq: 2, len: 3, Blk: 32, Acknowledged packet type "Z" 
S,31-Mar-2023 19:30:58.761, type: B, seq: 2, len: 3, Blk: 32, End of Transmission 
R,31-Mar-2023 19:30:58.762, type: Y, seq: 3, len: 3, Blk: 33, Acknowledged packet type "B" 

The above are the complete negotiations for Kermit-20 in server mode being asked to fetch the 
file NUL: 

Time of Day Limitations 

A careful inspection of the above reveals that not even millisecond resolution is sufficient to 
distinguish certain messages.  Unfortunately, this is the maximum that Tops-20 can provide for 
time of day.  While Tops-20 can provide a 100 kHz interface for timing intervals down to 10 
microseconds (via the HPTIM% .HPELP function), this is decoupled from the time of day (I.E., 
GTAD%) and artificially wrapped every 76:21:17.90694. 

The latter wrap allows the 1 mHz KL10 clock to simulate both the 100 kHz DK10 clock used on 
TENEX KA10 hardware and the TENEX interface.  It effectively prevents high precision timing 
after the system has been up over 3 Days, 4 Hours, 21 Minutes, 17 Seconds, 906 Milliseconds 
and 940 Microseconds. 

Fixing the problem would involve modifying Tops-20 to expose the complete raw clock (via the 
RDTIME instruction), the last time and day set and the uptime when it was set.  While it would 
be possible to use XPEEK% and USRIO% to get the first two items, Tops-20 does not record the 
3rd, so it is impossible for Kermit to completely resolve the problem by itself. 

Kermit-20 is able to do the following via an understanding of some Tops-20 monitor internals.  
The time of day is kept in a 36 bit full word with the left half word being the number of integral 
days since November 17th, 1858 and the right half word being a fixed point fraction of the day, 
the denominator thus being 218 or 262,144. 

It is thus possible to time events from before the American Civil War until August 7th, 2576 (or 
some 717 years, 8 months and 21 days) to a resolution of 329.5898438 milliseconds.  Since the 
time display of ODTIM% shows only fractions, Kermit-20 attempts to provide millisecond timing 
by keeping all times in milliseconds and calculating time of day off of the system boot date and 
time. 

This has the advantage of providing times which do not go backwards, but microsecond time of 
day is still unavailable.  All other times in Kermit at in HPTIM% units and are unrelated to time of 
day. 

SERVER Enhancements 
Server mode has been enhanced to provide some additional information. 



PWD (Generic ‘A’) 

Prints the current working directory, viz: 

Kermit-20>Remote PWD 
STAR:<KERMIT.K20MIT> 

This allows better reverse compatibility with other versions of Kermit which can request this, 
such as C-Kermit. 

STATUS (Generic ‘Q’) 

Generic ‘Q’ is not adequately documented in the Kermit protocol, but the behavior is modeled 
after Kermit-10.  It is possible that future versions of C-Kermit will implement the query.  The 
format of the result is exactly what would be seen in Kermit-20’s LOCAL STATISTICS 
command and is used to check for inconsistencies during regression tests. 

This format is described below in the STATISTICS (Enhanced) command. 

The NUL: device 

Previous versions of Kermit-20 would only do transfers to file structures.  Due to the amount of 
testing being done and to test extreme edge cases, the restriction was relaxed to allow 
transfers to the NUL: device, which has the effect of simply throwing away the data. 

This also has the advantage of being able to time the raw protocol without storage latency 
getting in the way.  Such extreme testing caught an edge case of zero length source file 
producing a target file with a byte count of zero yet a page count of one. 

Most NUL: transfers are simulated, such as DELETE (which does nothing) and 
DIRECTORY(which always shows the same thing), viz: 

Kermit-20>Remote Type "NUL:" 
. 
NUL: 
 
 
[OK] 



Kermit-20>Remote Delete "NUL:" 
 
 
 
NUL: [OK] 
 1 file 
[OK] 
Kermit-20>Remote Directory "NUL:" 
. 
 
NUL: 
NUL:                  0          0(7)        Now 
 1 file 
[OK] 

It will be noted that remote file names may now be specified in double quotation marks.  This 
allows an easier specification of files with embedded spaces as well as facilitating escape 
recognition for end of line confirmation. 

Since connecting to NUL: makes no sense under Tops-20, this is not simulated. 

Efficiency Enhancements 
Kermit-20 was largely coded for protocol correctness and robust error recovery.  However, in 
certain instances, multiple instructions and JSYI were used where this could have been avoided.  
A number of these cases have been re-coded in order to reduce execution time requirements, 
typically trading space for time. 

For example, EXTEND MOVST is used extensively for INPUT recognition and parity generation, 
resulting in a single instruction at the cost of a table, typically being less than a hundred words.  
In addition to generating parity, Kermit-20 will now detect parity errors, but this is only used for 
regression testing as the protocol itself provides these services and network connections are 
(claimed to be) error free. 

C Escape Sequences 
Previously, Kermit-20 would only allow special characters to be specified using an octal format.  
As these can be difficult to remember, the following ANSI C escape sequences are now 
recognized by Kermit-20: 

Escape 
Sequence 

ASCII Value 
Octal Description 

\a   7 Alert (Beep, Bell) 
\b  10 Backspace 
\t  11 Horizontal Tab 
\n  12 Line Feed (Unix Newline) 
\v  13 Vertical Tab 



\f  14 Form feed (Page Break) 
\r   5 Carriage Return (bare, no line feed) 
\"  42 Double quotation mark 
\'  47 Apostrophe or single quotation mark 
\?  77 Question mark (used to avoid trigraphs) 
\\ 134 Backslash 
\e  33 Escape character 
\q  42 Double quote (for use inside quoted strings) 
\c   3 ETX (Control-C, useful for DEC OS's) 
\d   4 EOT (Control-D, Unix End of File) 
\z  32 SUB (Control-Z, Tops-10/20 End of File) 

\@ 100 Tops-20 default EXEC command prompt 
\.  56 Tops-10 monitor prompt 

At-sign is probably best managed inside a quoted string.  As an example, searching for "foo" 
followed by a Tops-20 newline and EXEC prompt might be written as "foo\r\n@". 

Note the following: 

1. All octal values are range checked to US ASCII seven bits and an error is thrown if this 
limit is exceeded.  An IBM system is expected to be front-ended with the appropriate 
converter to handle explicit EBCDIC values. 

2. Digits 8 and 9 will fail an octal conversion.  All other characters will merely silently stop 
the conversion. 

3. In all cases, Kermit will not process more than eleven octal  digits after a backslash. 
4. Newline on Tops-20, Tops-10 and other DEC operating systems is unlike Windows, Unix 

or Multics, where it is the single character "\n".  The proper sequence to search for is 
"\r\n", in that order.  

5. Unlike C or its derivatives, escape characters are not case sensitive, meaning (capital) \N 
will produce the same value as lowercase \n (octal 12).  This is in keeping with all 
parsing under Tops-20 and allows for a user to provide emphasis. 

6. The last seven items (\e, \q, \c, \d, \z, \@ and \.) are non-standard, the last five (\q, \c, 
\d, \z, \@ and \.) being unique to Kermit-20. 

7. Any character that is not in the above table will cause an error. 
8. Because of the string instructions being used, it is far more efficient to search for a 

single character.  For example, on Tops-20, when searching for the result of an EXEC 
command, INPUT "\@" will execute with substantially less processor overhead then 
INPUT "\r\n\@". 

Enhanced Escape Character Parsing 
Where it is necessary to specify an ASCII control character (for example, when setting the 
ESCAPE or HANDSHAKE characters), Kermit-20 provides the user with some flexibility. 



The basic problem with specifying a control character is that these are frequently used by 
operating systems and applications as a source of interrupts to signal specific conditions or 
requests.  Therefore, the character may not be directly available interactively and difficult to 
insert into a KERMIT.INI file. 

Kermit allows a control character to be specified in one of two ways, the first being to simply 
type the octal numeric value.  For example, 015 might be typed to indicate a carriage return.  
However, unless you happen to have an eidetic or otherwise photographic memory, recalling 
these values can be challenging in the absence of a handy table (which can be its own 
challenge). 

The easier way to do this with Kermit is to type the carat or "^" character (also known as the up 
arrow character) followed by another character.  This is intended as a mnemonic aid. 

For example, when typing a ^B (ASCII 002) normally, the "B" key is 'chorded' with the Control 
key.  This means that the Control key is pressed and held down and while being held thusly, the 
"B" key is pressed and released and then the Control key is released.  The resulting character 
(ASCII 003) is then generated and it is commonly displayed as "^B". 

In order to specify this ^B (or Control-B) to Kermit, the user would simply type the carat 
character followed by the letter "B".  Kermit is caseless in this regard, so either "^b" or "^B" will 
work.  As with all native Tops-20 programs, escape and question mark may be used, viz: 

Kermit-20>SET ESCAPE ^ ? ASCII control character one of the 
following: 
 
 A    B    C    D    E    F    G    H    I    J    K    L    M 
 N    O    P    Q    R    S    T    U    V    W    X    Y    Z 
  or to specify the NUL character, type "@" 
  or to specify the ESCAPE character, type "[" 
  or to specify the file separator character, type "\" 
  or to specify the group separator character, type "]" 
  or to specify the record separator character, type "^" 
  or to specify the unit separator character, type "_" 
  or to specify the rubout or delete character, type "/" 

The carat and printable character to control character mapping is as follows: 

Control 
Character 

Octal 
Value 

Control 
Character 

Octal 
Value 

Control 
Characte 

Octal 
Value 

^@  0 ^K 13 ^V  26 
^A  1 ^L 14 ^W  27 
^B  2 ^M 15 ^X  30 
^C  3 ^N 16 ^Y  31 
^D  4 ^O 17 ^Z  32 
^E  5 ^P 20 ^[  33 
^F  6 ^Q 21 ^\  34 
^G  7 ^R 22 ^]  35 



^H 10 ^S 23 ^^  36 
^I 11 ^T 24 ^_  37 
^J 12 ^U 25 ^/ 177 

Note that the use of up-arrow forward slash is non-standard as the more typical way of 
representing rubout would be up-arrow question mark ("^?").  This is not possible with Kermit-
20 as question mark gives the menu shown above.  Forward slash is used as it is on the same 
key as question mark is, unshifted on many keyboards. 

Enhanced Quote Characters 
The Kermit protocol mandates that the quote character be in the ASCII printable range, 
meaning you could see it were you to print it.  More specifically, the character can not be in the 
control range (0 to 37 octal), nor a space (octal 40) nor rubout (177). 

Kermit-20 allows the quote character to be directly specified, provided it is one of the 
following: 

0 1 2 3 4 5 6 7 8 9 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
a b c d e f g h i j k l m n o p q r s t u v w x y z 
" # $ % & ' ( ) * + . / : < = > [ \ ] ^ _ ` { | } ~ 

Other grammatical characters can not be specified directly because they are either usurped by 
Tops-20 itself or Kermit already uses them for other purposes (such as macro definition).  These 
may be specified either as a mnemonic keyword or as octal.  The following table lists the 
keywords, the characters and the octal equivalents: 

Keyword Character Octal 
at-sign @ 100 
comma , 54 
dash - 55 
exclamation-mark ! 41 
question-mark ? 77 
semicolon ; 73 

Thus, as far as Kermit-20 is concerned, the following two SET commands do exactly the same 
thing, setting the start-of-packet character to a comma. 

Kermit-20>set send quote comma 

Kermit-20>set send quote 54 

New Commands, Differences and Enhancements 
CAPTURE (New) 

CAPTURE [ [ /TIMEOUT n ] [ /EOF ^Z | ^D | $ | ^G ] ] 
filespec [ prompt | "prompt" ] 



Intended for use in remote mode only.  This invisible command is the remote counterpart to 
the local TRANSMIT command since it ‘captures’ the text file that TRANSMIT sends.  It is used 
only for testing purposes and the help text for the TRANSMIT command should be used as a 
reference before attempting such a capture. 

The prompt must match what TRANSMIT was told to recognize as CAPTURE will print this after 
each and every line of text received.  A line of text is expected to be terminated by carriage 
return (\r) and CAPTURE will write this to the indicated file and a line feed (\n) appended as 
TRANSMIT assumes carriage returns and strips line feeds. 

The prompt string may be enclosed in quotes and may include special characters by preceding 
their octal ASCII values with a backslash (e.g. \15 for carriage return) or C escape sequence 
(e.g., \r being converted into octal 15). 

Only a single file may be captured, no wildcards are allowed in the filespec.  The file must be 
created on a file structure to which you either have or have gained access.  No other device is 
permitted with the exception of NUL:, which is only used for debugging and testing purposes.  It 
is strongly recommended that this file not be particularly large (see TRANSMIT). 

The file will be captured using the current settings for duplex, parity, and flow control.  These 
parity settings must be set beforehand and must match as a parity failure will cause the capture 
to be aborted. 

Unless a SET INPUT TIMEOUT default has been set or a /TIMEOUT switch has been given there 
may be no timeouts on input text.  Thus, like INPUT, CAPTURE command will wait forever for 
each line of text to appear.  A control-C typed two or three times will close the file specified by 
CAPTURE command and return you to the Kermit-20> prompt. 

The optional /EOF switch may be used to indicate that a particular character should be sent 
when the End-of-File (EOF) condition is detected.  The following EOF characters are supported: 

Character Description 

^Z Used by DEC operating systems, such as Tops-10 and Tops-20, 
IBM/Microsoft OS's, such as DOS, OS/2 and Windows. 

^D Used by Unix type systems, such as Linux, Mac OSX and Ubuntu. 

 $ Dollar sign is used as a talisman for the escape character (Octal 
33), which is used by Tops-10 and others as a line terminator. 

^G Used by certain DEC CUSPs, such as PIP and audible debugging. 

The file is always received as an eight bit stream, even if it was seven bit ASCII originally and is 
always stored as seven bit ASCII, no matter what the source was. 

Great caution should be exercised when using this command as it can crash communications 
systems, hang network connections and otherwise wedge other terminal based data paths.  
The safest approach may be to split the file up into several smaller pieces and do the TRANSMIT 
of each separated by PAUSE's at off hours in a batch job. 



Recall that the whole point of the Kermit protocol was specifically to avoid this situation with 
DECSYSTEM-20 PDP-11 front end.  Although these systems are only museum pieces now, their 
network implementations can still hang if pushed too hard. 

If the wedge is bad enough, somebody may have to reboot the remote computer, which risks 
making you unpopular with the staff or owner if it happens often enough. 

If you really want to send the entire file without looking for any prompts, specify a prompt of 
"\0" (ASCII zero or NUL).  Again, this means that you are send the file at the fastest possible 
speed that the line will support with no acknowledgements; be aware that this will almost 
surely hang any computer which does not have a dedicated, real time input facility, particularly 
if this is done at Ethernet speeds. 

Otherwise, this should only be used for testing and debugging purposes on loopback 
connections using pseudo-terminals as these will self-throttle. 

CLEAR (Enhanced) 

CLEAR [ /ALWAYS | /DISPLAY | /ESTIMATE | /FLUSH | PEEK [/REPEAT [n]] ] 

Clear the monitor's input and output buffers of the currently selected line or network 
connection and remove any internally buffered data. For physical lines, attempt to clear any 
XOFF condition if XON/XOFF negotiation is being done. 

A combined count of characters is returned if any were removed from either the monitor or 
internally. 

This is highly useful in local mode, when the connection to the remote system appears to be 
stuck.  Often, a stuck connection is the result of a rather large number of NAK's having piled up 
because: 

1. The user hasn't issued a remote Kermit command in quite some time. 
2. The remote server time-out parameter, which sets the NAK interval, having been set too 

low. 

CLEAR can also be used for recovering from a TRANSMIT or INPUT error. 

/ALWAYS 

Whenever Kermit detects that it has cleared characters, it displays a summary like this: 

Iterations: 2, Cleared: 19, Elapsed: 1.00012 (TOD: 3) 

Using ALWAYS forces this summary to be displayed whether or not anything was actually 
cleared.  It is not the default as this causes more output.  The switch is provided largely for 
debugging and check-out purposes. 

/DISPLAY 

Show the data that was actually removed from the line or network connection and internal 
buffers, viz: 

Kermit-20>CLEAR /DISPLAY 
Buffered: 43, 'ENTI2, PANDA TOPS-20 Monitor 7.1(21746)-5 



' 
^A# N3^M 
^A# N3^M 
^A# N3^M 
^A# N3^M 
^A# N3^M 
^A# N3^M 
^A# N3^M 
^A# N3^M 
^A# N3^M 
 
Characters flushed: 97 

When connected to a virtual device, such as a DECnet NRT or a pseudo-terminal, a count of 
characters removed is kept.  For DECnet, this number can get to be quite large and is the result 
of a Tops-20 monitor anomaly which Kermit-20 compensates for. 

Despite the anomaly, be aware that a large number of NAK's can build up, perhaps because the 
connection has sat idle overnight, depending on the remote system's user and monitor buffers. 

Although /FLUSH and /DISPLAY will exert best efforts and not return until the local Tops-20 
hosts declares the line cleared, once the logjam is resolved locally, the remote host may still 
have more NAK's to deliver. 

Therefore, do not assume that a single CLEAR will do the trick, multiple clears may need to be 
issued in order to fully drain the connection. 

Like /FLUSH, /DISPLAY will toss any data in Kermit's internal buffer which is remaining for the 
INPUT command to process.  This need only be done once; using /REPEAT to get rid of buffered 
internal data produces no detectable effect. 

/ESTIMATE 

Display what the monitor thinks is in the line or network buffer.  Be aware that, unless you have 
a local or "loopback" connection to a Kermit on a Tops-20 pseudo-terminal (PTY), this number is 
often wrong because characters can be stacked up at the remote site, waiting for transmission. 

In short, there is no way Tops-20 can know what a remote host might have in store for you.  
Therefore, the only truly accurate way to know how much data is stuck is to actually try remove 
it with either the /FLUSH or /DISPLAY switches. 

To see what might be waiting for INPUT or TRANSMIT to process, do a /PEEK. 

/FLUSH 

Remote all data from the line or network connection.  /FLUSH is the default; giving a CLEAR 
command with no switch implies /FLUSH.   

In addition to getting rid of whatever is in the monitor buffers, /FLUSH will also remove what 
Kermit may have buffered internally for the INPUT or TRANSMIT command to read. 



/FLUSH will report a count of characters it was able to remove, which will include the combined 
total of the monitor and Kermit internal buffers.  Doing a SHOW LINE will show these totals 
separately. 

/REPEAT [n] 

The /REPEAT switch may be used to issue multiple CLEARs.  By default, /REPEAT will try five 
clears, each separated by an interval of 1 second.  A count parameter may be specified to 
change the repetition and an optional comma may be given, followed by the number of 
seconds to delay.  For example: 

CLEAR /DISPLAY /REPEAT:6,1.25 

Will cause the CLEAR /DISPLAY logic to be repeated six times with a delay interval of one and a 
quarter seconds.  Thus, the total time to execute the command will be seven and a half 
seconds. 

Leaving a CLEAR /DISPLAY running for a long time is one way to determine whether you have a 
noisy line or whether any unexpected output might be hanging things up. 

It is possible to repeat an /ESTIMATE, but the value is unlikely to change nor be of much value.  
The functionality exists for testing and debugging.  Similarly, using /REPEAT to get rid of 
buffered internal data produces no detectable effect as the buffer will not contain any data 
until such time as another INPUT or TRANSMIT is issued.  

A repeat loop may be aborted with a ^C.  If the process does not have Control-C capability, then 
a Control-G may be used instead, and the user will be advised of this. 

The status of a repeat loop may be requested with a Control-Y (^Y).  It will print the number of 
iterations done so far, the total characters cleared and the elapsed time spent doing this, which 
includes the accumulated delays.  For example: 

Iterations: 17, Cleared: 120, Elapsed: 12:04.63581 (TOD: 2198) 

/PEEK 

Use of the TRANSMIT or OUTPUT and INPUT commands can cause Kermit to keep a certain 
amount of host output in an internal buffer.  This buffer is exclusive to these commands and 
will not be seen by any data transfer commands (such as SEND and RECEIVE) nor will it be seen 
if you reconnect. 

/PEEK will show the size of this internal buffer and what is in it, but does not remove anything 
to allow for further use of TRANSMIT, INPUT and OUTPUT.  This is useful for debugging scripts 
(I.E., 'TAKE' files), macros and batch jobs. 

Therefore, /ESTIMATE will not report this data, but /FLUSH will get rid of it and /DISPLAY will 
show it as part of removing it. 

CWD (Enhanced) 

CWD directory [ password | "password" ] 



CWD means CHANGE WORKING DIRECTORY.  It is the same as LOCAL CWD, which is executed 
on the local Tops-20 system.  This operation is the same as the DEC-20 CONNECT command 
and, similarly, a password may be requested for proper completion.  CWD is a Unix term; the 
operation here being more properly known as a "CONNECT". 

Be aware that connecting to a Tops-20 directory has very different functionality than other 
operating systems and can have far-reaching consequences. 

In particular, CWD can change access to other files as well as change the default directory in 
which file operations will be performed.  This means that file operations which previously failed 
may now succeed and vice versa.  CWD is commonly used to gain this access. 

Also, a CWD changes the directory for the entire job and not just for the Kermit-20 fork.  
Concurrently executing forks will not be aware of this.  Open files will not be effected, but any 
new file operation that does not explicitly specify or default the structure and directory will use 
the new 'working' (I.E., connected) directory.  

Note that if the directory in question is on a regulated structure, then that structure must be 
mounted first with the DEC-20 MOUNT STRUCTURE command as Kermit-20 contains no facility 
to do this and is prevented from bypassing mount counts in most situations. 

Attempting to specify a directory on a structure which has not been mounted will be rejected 
as a parse error.  This allows the user to type a ^H to get the command back, ^C to the EXEC, 
mount the structure and then CONTINUE the Kermit-20 fork to confirm the CWD.  The parse 
error will abort batch jobs. 

Finally, it can readily be seen that makes no sense to connect to a device which does not 
support file structures and Kermit-20 will reject this.  Trying to connect to NUL: does nothing 
and leaves you still connected to your currently connected directory. 

Simply issuing CWD with no arguments will connect you to your login directory.  If you are 
connected to a directory on one structure and wish to connect to a directory of the same name 
on another structure, you can merely type the structure name by itself and Kermit-20 will 
default the directory.  If this fails for some reason, you will get a parse error and can retry the 
command. 

The second form of CWD allows both the directory and the password to be specified on the 
same line.  This is primarily intended for .CMD files, batch jobs and never for interactive use.  
This is because the password is echo'ed can thus be seen by others! 

In this case, omit the password and Kermit-20 will only prompt for a password if it determines 
that it can't connect without one.  When Kermit-20 prompts for a password, it will not be 
echo'ed. 

In an attempt to decrease the needless use of passwords, Kermit-20 will reject a quoted 
password as a parse error in addition to not prompting for one.  This will allow the user to type 
a ^H to get the command back and then type a ^W, rubout (or delete) and hit enter to retry the 
command.  The parse error will abort batch jobs. 

When issued as a REMOTE CWD, the directory specification may be put in double quotes. 



CAUTION: Kermit-20 is not able overwrite the password text on half-duplex lines because it has 
no control over the line feed that is typed after the enter key is hit.  It is suggested that the 
screen be promptly cleared or the paper removed. 

DELETE (Enhanced) 

DELETE filespec 

DELETE is the same as LOCAL DELETE.  It works like the DEC-20 DELETE command, except that if 
you SET EXPUNGE ON, then all files that you delete with Kermit-20, whether with interactive 
DELETE commands, or via REMOTE DELETE commands when Kermit-20 is running as a server, 
will also be automatically expunged. 

Where files have multiple generations, setting Kermit-20 to run without automatic file 
expunging has been enhanced to result in far faster performance.  If a delete results in multiple 
generations being removed, then the count of generations per file will be displayed.  Otherwise, 
a single generation will not be remarked on.  At the end, the total number files deleted will be 
displayed. 

Be aware that Kermit-20 does not have an UNDELETE command.  If EXPUNGE is off, then you 
must use the DEC-20 UNDELETE command to recover the file. 

If the directory is EXPUNGED by another user (perhaps by a LOGOUT), then the deleted files will 
no longer exist and can not be undeleted.  Similarly, any file that is deleted with EXPUNGE set 
ON can not be undeleted. 

A file may only be deleted from a directory based device, such as a file structure.  All other 
devices will be rejected with the exception of NUL:.  The NUL: device may be deleted as many 
times as you like, but nothing useful happens.  Such functionality is intended purely for 
debugging purposes, only. 

When issued as a REMOTE DELETE, file recognition is not available, but the file specification 
may be enclosed in double quotes. 

DIRECTORY (Enhanced) 

DIRECTORY filespec 

DIRECTORY is the same as LOCAL directory.  It produces a listing of the specified files at your 
terminal.  The default is to list all generations of all file types of all file names in the currently 
connected directory. 

The DIRECTORY command can not be used to list files that have either been set invisible or are 
deleted.  Use the DEC-20 DIRECTORY command to do this.  Additionally, neither command can 
be used to list files that have been protected against listing or are in a directory to which you 
have no list access. 

Kermit-20 can not list files on a device that has no directories and will reject such requests.  
Therefore, it makes no sense to try to list your or anyone else's terminal. 



NUL: may be listed, but nothing particularly useful is happens, a single zero length file with a 
zero byte length named "NUL:" being displayed, the creation date always being "Now".  Such 
functionality is intended purely for debugging purposes, only. 

When issued as a REMOTE DIRECTORY, file recognition is not available, but the file specification 
may be enclosed in double quotes. 

ECHO 

ECHO [ "Quoted Text" | text-string ] 

Echoes the given text string at your terminal.  Useful in TAKE command files and with login 
scripts for reporting progress or telling you what to do.  A quoted string may also be given, 
which may then be explicitly visually confirmed.  Typing nothing (I.E., an ECHO all by itself) will 
echo a blank line. 

ECHO will expand C escape sequences.  For example, issuing this command: 

ECHO "\r\n\qHello\q\r\n" 

will result in: 

"Hello" 

being displayed on the terminal.  This is useful for learning, prototyping and refamiliarization 
with the functionality. 

ECHO will respect parity, but this isn't really useful for anything but debugging and internal 
checkout.  In many cases, abject gibberish will be displayed, depending on the character font of 
the terminal or rendering device. 

INPUT (Enhanced) 

INPUT [/SILENT] [interval] [ "quoted text string" | text-string ] 

INPUT is useful with OUTPUT and PAUSE for sending connect and login sequences to a remote 
host, e.g. over a dialout or network connection. 

On the currently selected communication line, network or virtual connection, look for the given 
string for the specified time interval. 

If no interval is specified, then wait for the default interval, which is 5 seconds unless changed 
by SET INPUT DEFAULT-TIMEOUT.  An interval of 0 means no timeout (wait forever).  A negative 
time will result in a parse error. 

Typing only a carriage return and no parameters at all will cause the default interval to be used 
and the default search string to be used.  If no search default has been given with a SET INPUT 
SEARCH-DEFAULT, then a default sequence of carriage return, line feed will be used. 

Fractional seconds may be given for n, such as 1.25.  These will be converted to the nearest 
millisecond value.  Such short waits may be useful for communicating with extremely fast 
remote machines over very high speed lines. 



They are also used for debugging and stress testing.  Unless you are actively debugging or the 
machine is very lightly loaded, it is unwise to perform stress tests. 

Characters coming in from the connection will be scanned for the search string, and when a 
match is found, the command will terminate successfully.  If the string is not found within the 
given interval, the command will terminate unsuccessfully.  While the INPUT command is 
active, all incoming characters will appear on your screen. 

The search string may contain any printable characters.  Control or other special characters may 
be included by preceding their octal ASCII value with a backslash, for instance foo\15 is "foo" 
followed by a carriage return,  \100 is an atsign (@). 

Another way of writing "foo\15" would be "foo\r" because certain common C language escape 
sequences, which are useful for their mnemonic value, are recognized. 

Alphabetic case is ignored ("a" = "A") unless you have SET INPUT CASE OBSERVE.  If no search 
string is given, then the INPUT command will keep operating until it times out. 

As INPUT scans the character stream for a match, it displays the text on the terminal under the 
assumption that these are system responses that the user will want to see.  This is essential for 
understanding what might have gone wrong on a failure. 

However, this might not be desirable for commands which produce copious output, in a batch 
environment or for certain types of debugging.  For this reason, the /SILENT switch may be used 
to discard this text and not print it.  Caution should be used because any error messages will 
also be discarded when /SILENT is in effect. 

As such, /SILENT processing can not be set as a default for the input command.  It must be 
issued for each and every command. 

If the INPUT command fails to find the requested string within the given interval, it will "fail"; if 
the INPUT command was issued from a command file (see TAKE), then the next command will 
be executed, unless you have SET INPUT TIMEOUT-ACTION to QUIT, in which case the 
command file will be terminated.  An INPUT command can by interrupted by typing two ^C's or 
two ^G’s if the process does not have Control-C capability. 

A quoted string may prove useful for interactive prototyping or to allow Kermit to recognize an 
at-sign (@), the Tops-20 prompt.  

OUTPUT (Enhanced) 

OUTPUT [ "quoted text-string" | text-string ] 

The given string is sent out the currently selected physical communication line, pseudo-terminal 
or network connection.  A quoted string may prove useful for interactive prototyping or to 
allow Kermit to emit an at-sign (@) while retaining the ability to use indirect files. 

Typing a simple carriage return will emit a bare ASCII carriage return (octal 15).  Control 
characters may be included in \ooo format, that is, a backslash followed by the octal numeric 
representation of the ASCII value. 



In addition, certain common C language escape sequences, which are useful for their mnemonic 
value are recognized.  Thus, the \015 may be more easily written as \r. 

PAUSE (Enhanced) 

PAUSE interval 

Pause for the given number of seconds.  Useful with INPUT and OUTPUT. 

There is no realistic maximum of seconds, other than what is imposed by the PDP-10's 
arithmetic and Tops-20's acceptance of the dismiss time.  It is probably not useful to sleep for 
more than a few minutes. 

The interval is assumed to be seconds, yet is parsed is a floating point number, which will be 
converted into milliseconds to allow for greater granularity of waits and debugging. 

The smallest pause value is 0.001 or one millisecond.  A negative value will be rejected. 

TIME (New) 

TIME device-keyword | COPY | device: [/switches] 

Performs basic communications checks and timing tests on the specified device.  These are not 
normally required as is not necessary to time a physical line because the baud rate can be 
gotten from the monitor. 

TIME exists largely for network transport code validation and for the verification of certain 
internal self-checks.  The speed results may be used as a basis for populating the device 
efficiency portion of the statistics command, but this will probably mean very little. 

TIME is not necessary in any way to a regular user, having use only to a programmer.  Because 
of this, the TIME command is invisible and does not show up as a keyword when a question 
mark list given to either the top-level or HELP command prompt. 

A timed device keyword may be one of the following which also may be specified by the 
corresponding unpunctuated device name: 

Synonym Device Punctuated Remarks 
data-sink NUL NUL: Used as .NULIO 
DECnet DCN DCN: DECnet Client 
 SRV SRV: DECnet Server 
pipe PIP PIP: Tops-20 pipe device 
pseudo-terminal PTY PTY0: Must specify device number 

This allows for the device name to be specified with escape recognition without punctuation 
and for the unit number to not need to be specified. 

COPY 

COPY from-device to-device 



Used to copy test results from one device to the other, which has the effect of causing the to-
device to appear to have a different virtual speed than what was measured.  This is used for 
algorithm checkout, edge case testing and providing abnormal inputs to trigger error recovery. 

Transfer results checking is typically on a byte-by-byte comparison if parity is set to NONE.  
However, if parity checking is turned on, then the timing routines will use that parity to check 
results.  This is for the purpose of validating the parity implementation--it is slower to check by 
parity. 

For an idiomatic device type or explicitly specified device name, a switch may be one or more of 
the following: /BYTESIZE: /MODE: and /RECORD-LENGTH:. 

CAUTION 

1. Not all devices support all switch options 
2. Not all devices support all switch values 
3. On a pseudo-terminal, the post transfer check will ALWAYS fail for any byte size greater 

than 8, even if the device is opened in IMAGE mode.  This the nature of the terminal 
driver. 

4. Timing results can vary wildly, based on whatever else the system happens to be doing. 
5. A test may time out on a heavily loaded system.  It is probably anti-social to keep trying 

immediately. 
6. The virtual speed is calculated by characters sent, the default being 8 bit characters.  

Since a character (or byte) on the PDP-10 can vary between 1 and 36 bits, the reported 
speed will change with different byte sizes, but the differences may be counter-intuitive, 
if not flat out meaningless. 

7. An odd byte size may trigger other false negatives.  "Odd" in this case does not mean 
that bit 35 is set, it means very uncommon or 'strange'; say a byte size of 13, for 
example. 

/BYTESIZE 

/BYTESIZE: decimal-number 

Requests a decimal number between 1 and 36.  Not all devices support all byte sizes.  DECnet, 
for example, will only support byte sizes of 7, 8 and 36; eight being the most efficient. 

The data used for the timing tests is formed internally from a sequence of thirty six bit words, 
each consisting of four 8 bit bytes with monotonically increasing values followed by a single 
four bit field with monotonically increasing value.  The 8 bit fields will wrap after 377 octal 
while the 4 bit field wraps after 17 octal. 

The default byte size used to calculate transfer speeds is 8 bit.  Since speed is bytes sent divided 
by elapsed microseconds, a smaller byte size will result in a faster speed being calculated for a 
transfer that took the exact same wall time because the number of bytes has increased. 

Thus, the displayed speed may first appear to be counter-intuitive, whereas it is actually likely 
to be devoid of any useful information. 



It is possible to specify a pathological byte size which will cause the post transfer validation 
tests to fail and drastically change computed transfer times.  Such results are either all false 
negatives or useful only for debugging. 

For example, while DECnet will explicitly refuse an OPENF% that does not specify a byte size 7, 
8 or 36, PIP: and PTY: will accept the parameter without complaints.  However while transfers 
against PIP: will work, the exact same transfer against PTY: will be found to have errors.  Strictly 
speaking, these are not errors but rather a result of the nature of the monitor's terminal driver 
(TTYSRV). 

/MODE 

/MODE: (DUMP) | IMAGE | NORMAL | SMALL 

The keyword may be one of the following: IMAGE, NORMAL or SMALL.  Be aware that not all 
devices support all modes.  While Kermit will parse for all values, some of them will fail.  In this 
case, a failure is defined behavior and not indicative of any true problem. 

NORMAL means different things, depending on device context.  For pseudo-terminals, it will 
cause the monitor to interpret certain characters as opposed to doing a straight passthrough.  
Otherwise, it means to use normal buffering and flushing. 

SMALL mode is for the monitor to use smaller buffers and/or flush them more frequently, 
giving perhaps better interactive response.  It is valid only for DECnet and pipes.  

IMAGE mode is for the monitor to not process characters going through the device, which can 
result in less CPU usage.  Only pseudo-terminals will accept IMAGE, which is set via the 
associated controlled terminal line. 

DUMP is an invisible MODE keyword.  No current Kermit transport device supports DUMP 
mode, however this selection can be specified and is used to test and debug device open failure 
recovery. 

/RECORD-LENGTH 

/RECORD-LENGTH: decimal number 

This switch is valid only for the PIP: (pipe) device and cannot be specified for any other device. 

Specify a decimal number between 1 and 511 for the size of records to write to the pipe device.  
A negative or zero record-length will be rejected. 

Generally speaking, larger record sizes will result in faster transfer times. 

NUL: device considerations: 

Be aware that /MODE can not be specified for the NUL: device.  This is because the NUL: test 
uses the special JFN, .NULIO.  As no GTJFN% is ever done on NUL:, no OPENF% is done and thus 
there is nothing to pass the MODE value to. 

Since writing to NUL: has the expected effect of throwing data away, certain post-transfer 
operations (such as parity checking) are impossible. 



TRANSMIT (Enhanced) 

TRANSMIT [[/SILENT] [/TIMEOUT n] [ /EOF ^Z | ^D | $ | ^G ]] filespec [ 
prompt | "prompt" ] 

Intended for use in local mode only, but will function in remote mode for debugging purposes.  
Sends the specified text file a line at a time to the remote system, waiting for the specified 
prompt for each line.  Kermit protocol is not used; the file is sent "raw". 

The file is expected to be a sequence of variable length ASCII lines, each terminated by a 
carriage return (\r or octal 15), linefeed (\n or linefeed).  The final linefeed will be clipped out of 
the text that is sent.  Problems may happen for files which use bare carriage returns for the 
purposes of overprinting. 

Only a single file may be sent, no wildcards are allowed in the filespec.  The file must exist on a 
file structure to which you either have or have gained access.  No other device is permitted with 
the exception of NUL:, which is only used for debugging and testing purposes. 

It is strongly recommended that this file not be particularly large nor have very long lines (see 
below). 

The prompt is any string, for instance, the prompt of a line editor in text insertion mode.  The 
prompt string may be enclosed in quotes and may include special characters by preceding their 
octal ASCII values with a backslash (e.g. \15 for carriage return) or C escape sequence (e.g., \r 
being converted into octal 15). 

If a prompt string is supplied, then alphabetic case will be ignored in searching for it unless you 
have SET INPUT CASE OBSERVE.  If a prompt string is not supplied, then the following defaults 
will be tried, in order: 

1. If a SEARCH-DEFAULT has been specified with SET INPUT, then this will be used. 
2. If you have performed a SET HANDSHAKE command, then that handshake character will 

be used. 
3. If neither 1 or 2 apply, then linefeed will be used. 

The file will be sent using the current settings for duplex, parity, and flow control.  Timeouts 
may be given via setting an INPUT TIMEOUT or via the use of the /TIMEOUT switch You may do 
a /TIMEOUT 0 to cause Kermit to wait forever for each prompt to appear.  You may use the 
following control characters during TRANSMIT: 

Character Function 

Carriage Return 
Send the next line immediately, even if the prompt 
hasn't appeared.  Note that in remote mode, an input 
string which includes \r will not work. 

Control-P Resend the previous line. 

Control-C 
Typed two or three times will cancel the TRANSMIT 
command and return you to the Kermit-20> prompt.  
You may then need to do a number of CLEAR/FLUSH's. 



Control-G Functions as Control-C if the process does not have 
Control-C capability 

/EOF 

The optional /EOF switch may be used to indicate that a particular character should be sent 
when the End-of-File (EOF) condition is detected.  The following EOF characters are supported: 

Character Background 

^Z 
Used by DEC operating systems, such as Tops-10 and Tops-20, 
IBM/Microsoft OS's, such as DOS, OS/2 and Windows.  Note that 
the later systems will require a line terminator after the ^Z. 

^D Used by Unix type systems, such as Linux, Mac OSX and Ubuntu. 

 $ Dollar sign is used as a talisman for the escape character, which is 
used by Tops-10 and others as a line terminator. 

^G 
Used by certain DEC CUSPs, such as PIP and audible debugging.  Be 
aware that if Kermit is run with Control-C capability disabled, then 
it will use ^G instead, which will override its use here. 

File Content Considerations 

The file is always sent as an eight bit stream, even if it is seven bit ASCII.  An eight bit file is 
expected to never have bit 0 set in any byte.  If no parity is in effect, this bit is left alone and 
sent as is, which may cause confusion on the receiving system. 

If this turns out to be a problem, then SET PARITY SPACE (or ZERO), will keep bit 0 cleared.  If 
parity is in effect, then bit 0 will be ignored and the byte is processed as if it were 7 bit ASCII, 
thus eventually overwriting the bit. 

/SILENT 

As TRANSMIT scans the character stream for the prompt, it displays the text on the terminal 
under the assumption that these are system responses to commands (which were perhaps via 
OUTPUT) that the user will need to see.  Reviewing the responses is essential for understanding 
what might have gone wrong in the case of a failure. 

However, this behavior might not be desirable for commands which produce copious amounts 
of output, in a batch environment or for certain types of debugging.  For this reason, the 
/SILENT switch may be used to discard this text and not print it.  

Be aware that any and all error messages will also be discarded when /SILENT is in effect.  As 
such, /SILENT processing can not be set as a default for the transmit command.  It must be 
issued for each and every command. 

/TIMEOUT 

By default, TRANSMIT will scan (and hence wait) forever for the specified prompt. 

This can be overridden by using the /TIMEOUT switch which takes floating point number for the 
number of seconds to wait before transmitting the next line, whether or not the prompt has 



been seen.  The minimum period is .001 seconds or a single millisecond.  Negative numbers will 
be rejected. 

Communications and System Considerations 

Great caution should be exercised when using this command as it can crash communications 
systems, hang network connections and otherwise wedge other terminal based data paths.  
The safest approach may be to split the file up into several smaller pieces and do the TRANSMIT 
of each separated by PAUSE's at off hours in a batch job. 

Recall that the whole point of the Kermit protocol was specifically to avoid this situation with 
DECSYSTEM-20 PDP-11 front end.  Although these systems are only museum pieces now, their 
network implementations can still hang if pushed too hard. 

If the wedge is bad enough, somebody may have to reboot the remote computer, which risks 
making you unpopular with the staff or owner if it happens often enough. 

If you really want to send the entire file without looking for any prompts, specify a prompt of 
"\0" (ASCII zero or NUL).  This will almost surely hang any computer which does not have a 
dedicated, real time input facility, particularly if this is done at Ethernet speeds.  This is 
commonly done only for testing and debugging purposes on pseudo-terminals. 

REMOTE ERROR (Enhanced) 

REMOTE ERROR [ text | "text" ] 

An invisible command used to send an "E" packet to the remote system.  This is largely used for 
debugging, but if the connection becomes wedged and doing a number of CLEAR's has not 
worked, this may get the remote Kermit into a defined state. 

Text may be specified and the remote Kermit should display this. 

Be aware that sending an unsolicited "E" packet may cause certain Kermit implementations to 
stop and exit.  Tops-10 Kermit is one such example. 

PWD (New) 
[ [REMOTE] | [LOCAL] ] PWD 

Print the current connected directory.  This is very different from the idea of a working 
directory which may simply be seen as a default directory specification as connecting to a 
directory in Tops-20 changes access rights (See CWD (Enhanced), above). 

Be aware that not all Kermit's implement PWD (Generic packet type "A").  Kermit-20 does not 
prior to edit 188.  Tops-10 Kermit does not, the idea of a path being only somewhat similar to a 
working directory. 

One work-around may be to try REMOTE SPACE as this often lists what is being used as the 
current working directory. 

SET PARITY (Enhanced) 

SET PARITY [ [ even | mark | none | odd | space 
[ /check-parity | /generate-only |  



  /packets-only | /terminal-and-packets ] ] ] 

If parity is being used on the communications line, you must inform Kermit-20 so it can both 
send the desired parity on outgoing characters, and either check or strip it from incoming ones. 

Be aware that parity may exist and be enforced by the foreign host before the Kermit protocol 
itself ever starts.  Thus, Kermit can not negotiate parity because no communications will be 
possible before it is set—therefore, you must specify parity beforehand or you may have 
problems up to and including the connection being dropped. 

The parity types are even, mark, none, odd and space.  "none" means no parity processing is 
done, and the 8th bit of each character can be used for data when transmitting binary files.  
This will make transferring eight bit data more efficient. 

The domain on which parity may be applied (or generated) while sending is either /packets-only 
or /terminal-and-packets.  The DEC-20 does not normally use parity on communication lines 
and thus Kermit strips parity on all received data.  This domain can be overridden by specifying 
/parity-checking.  The Tops-20 terminal driver (TTYSRV) will only generate even parity. 

If nothing is specified, then the defaults are used, which are none, /terminal-and-packets and 
/generate-only; these are congruent with previous behavior. 

If odd, even, mark, or space are selected, binary files will be transferred using 8th-bit-prefixing, 
but only if the other side agrees.  If this is not the case, they cannot be successfully transferred.  
If none is specified, 8th-bit-prefixing will not be requested.  Be aware that 8th-bit-prefixing may 
result in slower transfer speeds for 8 bit data. 

SET PARITY should be used for communicating with hosts that require character parity, or 
through devices or networks (like TELENET) that add parity to characters that pass through 
them.  Both KERMITs should be set to the same parity. 

The specified parity is used both for terminal connection (CONNECT/SET LINE) and file transfer 
(SEND, RECEIVE, GET) along with direct text issuance and recognition (INPUT, OUTPUT and 
TRANSMIT).  Specifying /packets-only will cause parity to be restricted from terminal 
connections and text issuance and recognition. 

Unless the foreign host insists on parity, specifying parity provides no real benefit as Kermit 
already has powerful error detection and correction that is built into the protocol.  
Furthermore, any detection of a parity error is considered a transfer terminating condition as 
would be the case were real parity being used. 

Parity is unnecessary on a pseudo-terminal as the data transfer is not going over any 
communications medium and is entirely internal to Tops-20.  Tops-20 will generate parity on a 
pseudo-terminal, but this is only used for testing purposes.  Tops-20 itself does not check parity 
although a front-end line may do this. 

Parity is also unnecessary for a Network Remote Terminal as DECnet is already providing error 
detection and recovery at both the packet and certain transport levels (via DDCMP, for 
example).  Note that Tops-20 will not generate parity on either a DECnet Network Remote 
Terminal. 



Parity can be still be specified in these cases, however, yet is used only for packet debugging 
and checkout.  The default terminal handling on pseudo-terminals and NRT's ignores parity on 
input.  In this scenario, /packets-only and /parity-checking should be specified. 

The current parity setting, the domains and whether the local terminal will tolerate parity can 
be displayed with SHOW LINE, viz: 

Kermit-20>show line 
 
TTY for file transfer:  22 
 (job's controlling terminal, KERMIT-20 is REMOTE) 
  Handshake:        None 
  Flow-Control:     XON-XOFF 
  Parity:           None 
  Duplex:           Full 
  Break Simulation: Disabled 
  Controlling Type: PTY [Parity] 
  Input Buffers:    1 
  Output Buffers:   1 

If the local line supports parity and the monitor supports querying line parity, then Kermit will 
report whether the line supports parity.  If the line supports parity, then Kermit will self-
configure to respect that parity.  This may be seen below, viz: 

@terminal speed 9600 
@terminal parity 
@kermit 
TOPS-20 Kermit version 5.3(230)-5 
 
Kermit-20>show line 
 
TTY for file transfer:  5 [Console] 
 (job's controlling terminal, KERMIT-20 is REMOTE) 
  Handshake:        None 
  Flow-Control:     XON-XOFF 
  Parity:           Even 
  Duplex:           Full 
  Speed:            9600 
  Break Simulation: Enabled, 3 NULs at 50 baud 
  Controlling Type: FE [Parity] 
  Speed:     9600 Bd 
  Input Buffers:    1 
  Output Buffers:   2 

SET PROMPT (Enhanced) 

SET PROMPT string | "string" 



Set the Kermit-20 prompt to whatever character string you like.  This is especially useful when 
connected to another DEC-20 through an auto-dialer or via a network, using another Kermit-20 
on the remote system. 

A unique prompt for each Kermit-20 will clear up any confusion about which one you're talking 
to which is almost mandatory for effective debugging.  This is also useful in a batch job doing 
configuration of the remote Kermit-20 via OUTPUT and INPUT commands prior to putting it in 
SERVER mode. 

The string may optionally be enclosed in double quotes.  This will allow a macro to change the 
prompt.  One of the uses of this is to change the prompt to be the same name as the macro 
that sets it. This can serve as a memory aid to recall what settings are in effect. 

The string may include C escape characters, although most of them will be of little use if not flat 
out counter-productive by potentially invoking command parsing. 

As an aid, when Kermit-20 is running local and using a DECnet connection, the prompt will 
default to the node name of the local system, otherwise, it defaults to "Kermit-20>"  Such 
defaulting will also happen for a pseudo-terminal connection, but it should be kept in mind that 
it is really the same system on both sides. 

SET FLOW-CONTROL (Enhanced) 

SET FLOW-CONTROL option 

For communicating with full duplex systems.  The DEC-20 system is capable of regulating the 
flow of characters on the line using XON/XOFF flow control.  If characters are coming into the 
DEC-20 too fast, the DEC-20 front-end will send an XOFF signal, Control-S, to tell the system on 
the other side to stop sending characters. 

After it has finished processing the characters in its input buffer, it will send a Control-Q to tell 
the other side to resume sending. The other system does the same thing when the DEC-20 is 
sending data characters. 

Kermit-20 will use XON/XOFF flow control on a full-duplex connection by default, and it will not 
use it on a half-duplex connection.  The options of the SET FLOW-CONTROL command are XON-
XOFF and NONE.  Invisible synonyms for XON-XOFF and NONE are ON and OFF, respectively.  If 
you SET FLOW-CONTROL to anything other than NONE, HANDSHAKE is set to NONE. 

FLOW-CONTROL is unnecessary on both pseudo-terminals and DECnet Remote Network 
Terminals, although it is simulated on both.  This is largely useless for two reasons. 

First, the XON/XOFF can not be honored by the simulation quickly enough to do any real good 
in contrast to the front end which will start and stop transmission in milliseconds, typically 
within a single character. 

Second, other flow controls exist which Kermit does not need to manage.  For a pseudo-
terminal, Tops-20 will not allow an overrun, putting whomever is clogging the pipe to sleep 
until such time as the partner has drained and processed the stacked up communications data.  
Similar functionality is implemented by DECnet but is not visible to the NRT. 



FLOW-CONTROL functionality is kept for debugging and checkout. 

Note: If you notice that you are seeing ^S/^Q’s being sent during communications (and you are 
not on a VT100 using smooth scroll), then the DEC-20’s front end is probably being driven too 
hard.  This is a dangerous thing to do as it risks crashing it, throwing off all the other users.  You 
should remediate by using a smaller packet size and small pauses between packets. 

SET INPUT DEFAULT-TIMEOUT (Enhanced) 

SET INPUT DEFAULT-TIMEOUT [ n ] 

n is the number of seconds for an INPUT command to time out after not receiving the 
requested input, if no interval is explicitly given in the INPUT command. 

The default timeout value is 10 seconds.  Fractional seconds may be given for n, such as 1.25.  
These will be converted to the nearest millisecond value.  Such short waits may be useful for 
communicating with extremely fast remote machines over very high speed lines or for testing. 

A negative value will be rejected.  A value of zero means to never time out. 

A default timeout may be override on a case by case basis by explicitly specifying the value to 
the INPUT command. 

CONNECT (Enhanced) 

CONNECT [ [number] | [host::] | ["pseudo-terminal"] 
["/stay" | "/timeout" [n] ] ] | 
["close"] | ["kill"] 

Establish a terminal connection to the specified destination system or reconnect to the 
currently active connection.  A destination may be one of the three following choices: 

1. A physical terminal, parsed as a simple octal number. 
2. A DECnet node. 
3. The keyword, "pseudo-terminal", for a loopback connection to the local host. 

/STAY 

All destination choices may be following with the /STAY switch, which instructs Kermit to not 
create a terminal fork, but rather stay at the local system; this can aid processing the 
INPUT/OUTPUT commands by eliminating a source of asynchronous reads. 

/STAY, INPUT and OUTPUT are the recommended way to use Kermit-20 from a batch stream.  
Using the communications fork in that context will not work without special modifications to 
BATCON.  Even an arcane sequence of pause commands may not work. 

/STAY with only INPUT and OUTPUT will also circumvent certain Tops-20 DECnet buffering bugs. 

/TIMEOUT 

/TIMEOUT may be used to override this and takes a numeric argument to specify the number of 
seconds to wait before failing the connection attempt.  The maximum duration is 94 seconds.  
The SET DELAY parameter is taken to be the default duration before declaring a connection 
time out. 



The minimum timeout is 0.001 seconds or one millisecond.  Negative timeouts will be rejected. 

While /TIMEOUT can be specified for any connection, it only has relevance for DECnet 
connections.  You can abort the connection attempt by typing a ^C.  Typing a ^Y will get you the 
current connection status as seen by Tops-20. 

CLOSE 

Unlike SET LINE and SET HOST, giving CONNECT with no arguments merely reconnects to the 
previous line, remote system or pseudo-terminal.  The connection may be explicitly closed with 
CONNECT CLOSE.  However, the terminal fork will be frozen and kept for later connections. 

KILL 

The transfer fork may be killed separately.  Killing the transfer fork will not close the 
connection, but could cause repeated or lost data which should be irrelevant as no active 
transfer is in process.  In this case, the CLEAR command may be tried to clear out any data. 

Cautions and Limitations 

Be aware of the following cautions and limitations: 

1. The physical terminal must not be in use or otherwise assigned to another job.  You can 
not Kermit to another person's logged in job. 

2. You can not connect to a local network terminal; the line must be a physical line. 
3. If you specify a DECnet node and the parse is successful, then that node is guaranteed to 

be known to Tops-20.  However, it may or may not be online and connections may take 
several seconds to complete.  The connection can fail for other reasons (see below). 

4. The remote DECnet host must support the Tops-20 NRT protocol; the connection will be 
rejected if this is not the case.  Currently, only a PDP-10 running either Tops-10 or Tops-
20 or Ultrix has such support. 

5. When logging in via a pseudo-terminal, if you use the same user id as the user id with 
which you are currently signed on, you will not be prompted for a password. 

6. Therefore, do not immediately type a password as it may wind up being echo'ed and 
also show up in a log file.  

7. A pseudo-terminal connection is largely used for testing and debugging.  Using it to run 
another program, such as TELNET to connect to an Internet host or CTERM a non-36 bit 
DECnet host is not guaranteed to work. 

Specifying nothing will reconnect to the remote connection.  If there is no remote connection 
currently open, then an error will be given. 

Switching between hosts 

Get back to Kermit-20 by typing the escape character followed by the letter C.  The escape 
character is Control-Backslash (^\) by default.  When you type the escape character, several 
single-character commands are possible: 

Character Function 
B Transmit a BREAK signal. 



C Return to the local Kermit-20; check-pointing log. 
P Push to a new Exec.  POP from the Exec to get back to the connection. 
Q Temporarily quit logging. 
R Resume logging. 
S Show status of the connection. 

^\ (or whatever you have set the escape character to be) -- Typing the 
escape character twice sends one copy of it to the connected host. 

The "B" command is always accepted but silently does nothing on a pseudo-terminal nor on a 
DECnet NRT; it is only relevant for a physical line. 

You can use the SET ESCAPE command to define a different escape character. 

Be aware the "C" command does not close an active connection.  Use the "close" keyword to 
accomplish this.  Holding the connection open means that a subsequent connect command 
with no argument will have the effect of continuing the remote session.  This is contrasted with 
SET LINE where specifying no parameter will close the currently active session. 

SET LINE (Enhanced) 

SET LINE octal-number | DECnet node name | "pseudo-terminal" 

Specify the octal TTY number or DECnet node to use for file transfer or CONNECT.  If you issue 
this command, you will be running as a local Kermit, and you must log in to the remote system 
and run Kermit on that side in order to transfer a file.  If you don't issue this command, Kermit-
20 assumes it is running remotely, and does file transfer over its job's controlling terminal line. 

You can also select the line directly in the CONNECT command. 

"pseudo-terminal" may be given for a loopback connection to the local host.  This is largely 
used for testing, debugging and checkout.  However, it is possible to use the remote job to sign 
into other systems using different protocols, such as CTERM and TELNET. 

Note the restriction that the remote DECnet host must be running Tops-20 terminal transport, 
currently Tops-20, Tops-10 and Ultrix. 

Be aware that, when logging into the pseudo-terminal, if you use the same user id as the user id 
which you are currently signed on as, you will not be prompted for a password.  Therefore, do 
not type it as it may wind up being echo'ed and also show up in a log file. 

Issuing a bare set line with no arguments closes the current active connection, if there is one. 

SET HOST (New) 

SET HOST DECnet node name | "pseudo-terminal" [/stay | /timeout] 

Specify the DECnet node to use for file transfer or CONNECT.  If you issue this command, you 
will be running as a local Kermit, and you must log in to the remote system and run Kermit on 
that side in order to transfer a file.  If you don't issue this command, Kermit-20 assumes it is 
running remotely, and does file transfer over its job's controlling terminal line. 



You can also select the host directly in the CONNECT command.  The /STAY and /TIMEOUT 
switches are the same as on the CONNECT command. 

"pseudo-terminal" may be given for a loopback connection to the local host.  This is largely 
used for testing, debugging and checkout. 

Be aware that, when logging into the pseudo-terminal, if you use the same user id as the user id 
which you are currently signed on as, you will not be prompted for a password.  Therefore, do 
not type it as it may wind up being echo'ed and also show up in a log file. 

Specifying neither will close any remote connection. 

Note the restriction that the remote DECnet host must support Tops-10/Tops-20 NRT protocol.  
This is usually PDP-10 running either Tops-10 or Tops-20, but the protocol is simple enough that 
any DECnet host can implement it, which Ultrix does. 

SET DELAY (Enhanced) 

SET DELAY floating-point-number 

How many seconds to wait before sending the first packet.  Use when remote and SEND’ing 
files back to your local Kermit.  This gives you time to "escape" back and issue a RECEIVE 
command before packets start arriving. 

The normal delay is 5 seconds. 

The delay may be given in fractions of seconds and this will be converted to milliseconds.  
Negative delays are rejected.  If no number is given, then the delay will default to 10 seconds. 

Note that the delay is ignored both when Kermit is running in LOCAL or SERVER mode as there 
is no need to escape back and forth. 

SET ESCAPE (Enhanced) 

SET ESCAPE [ octal-number | ^ + another character ] 

Indicate what control character you want to use to "escape" from remote connections.  The 
number is the octal value of the ASCII control character, 0 through 37 and 177. 

You may also type the carat ("^") character followed by a single character indicating the control 
character you wish to use. 

When you type whatever has been chosen as the escape character, you must follow it by a 
single-character "argument" as described in Switching between hosts, above. 

Entering the escape character twice in a row will cause the escape character itself to be sent.  
As is the case with other Kermit implementations, the word "CLOSE" does not mean disconnect.  
It means bring you back to the local host while holding the remote connection open.  It is best 
to think of Close as meaning Escape. 

If you do not specify anything, Kermit will default the escape character to octal 34 (Control-
Backslash ^\).  If you wish to do this when defining a macro, simply type a comma and go on to 
the next SET value you wish to change. 



Kermit will reject a number of escape characters, among the following: 

1. ^C is rejected in all cases. 
2. ^G is rejected in a Batch job or if Kermit is running without ^C capability (SC%CTC), 

which is typically while debugging. 
3. If you are running with Flow Control on, then neither ^S (a.k.a XOFF, DC3 or octal 23) or 

^Q (a.k.a. XON, DC1 or octal 21) will be accepted. 
4. If you are running with handshaking, then the handshake character will not be accepted. 

Care should be taken for escape character selection.  For example, a ^O may produce 
unexpected results.  Some experimentation may be useful. 

STATISTICS (Enhanced) 

Gives statistics about the most recent file transfer.  A sample is shown with the explanation 
following: 

Kermit-20>Statistics 
 
Maximum number of characters in packet:  9000 received: 120 sent 
Communications duration: 14.40904 (TOD: 43), analysis: 
 
       Sent:      514          Efficiency:     [100% Overhead] 
       Received:  1463321      Efficiency:        1.2262 
       Total:     1463835      Efficiency:        0.8158 
 
Total characters per second:     99.2104 KC/s 
Effective data rate:              1.1876 MBd 
Pseudo-efficiency:                6.2324 per cent 
ILDB: 1457309  SIN:  5888  SIN Max:  249  BIN:  6012 
Interpacket pause in effect: 0 ms 
 
Timeouts: 0 
NAKs:     0 

The first line of output indicates what size packets were negotiated for the transfer. 

The second line of output gives the time spent doing the transfer in the form of 
hh:mm:ss.mssnn.  hh indicates the number of hours spent and can go over 24 hours.  mm and 
ss indicate minutes and seconds respectively and do not go over 59.  mss indicates the number 
of milliseconds and can vary between 0 and 999.  nn indicates 10’s of microseconds and can 
vary between 0 and 99, meaning 10 and 990 microseconds. 

The TOD figure is the number of elapsed Tops-20 time-of-day (TOD) ticks.  A TOD tick is a fixed 
fraction whose unit quantity is the number of seconds in a day (86,400) divided by 2 to the 18th 
power (262,144) or .329589844 seconds.  This is quite close to, but not a third of a second. 

The efficiency is a multiplicative factor that is derived from counters that are kept on a per 
transfer basis,  A transfer is defined to be all files that were either sent or received by the last 



command.  It is calculated as follows: the total number of characters in every file is divided by 
the number of characters that were necessary to communicate them. 

If the factor is over 1, then Kermit compression is saving time.  If it is under one, then the total 
characters used, including prefixing, is causing extra bandwidth to be consumed. 

Since Kermit will only support one send or receive file group at a time, one part of the transfer 
will always show as %100 overhead, as these are the acknowledgements sent for packets 
received. 

The numbers kept for STATISTICS and the numbers kept for SHOW LINE are not related and 
have nothing to do with one another. 

Pseudo-efficiency is used to simulate the efficiency of the communications line, which was 
useful for hardware serial lines where the baud rate was known.  As it is almost impossible to 
know the speed of all legs of a network transfer, this number is simulated against data that is 
gathered with the TIME command. 

The ILDB: 1457309  SIN:  5888  SIN Max:  249  BIN:  6012 line indicates how 
efficiently Tops-20 is being used and is of interest largely to developers.  Briefly, the higher the 
ILDB number is, the better as monitor buffering (via SIN) has been used instead issuing single 
byte inputs (BIN). 

Note: if the speed of the machine and the communications lines are extremely fast and the 
packet sizes are at maximum (9000 characters), then millisecond transfer times will be seen.  In 
such environments, pathologically short file sizes will see microsecond transfer times.  These 
are all far less than the TOD granularity described above which was the previous Kermit-20 time 
base. 

The maximum time precision of most Tops-20 systems is derived from the frequency of the KL 
clock which operates at 1 mHz.  This is converted to DK10 clock units, which runs at 100 kHz 
unless using an external clock source, in which case the maximum frequency is 400 kHz.  
Assuming 100 kHz, the finest granularity that can be measured on an unmodified Tops-20 is 10 
microseconds. 

SHOW LINE (Enhanced) 

When running as LOCAL and using network or pseudo-terminal connection, Kermit keeps extra 
performance information.  This information is separate from what is shown in STATISTICS for a 
Kermit protocol based transfer. 

In this case, it is specific to the virtual terminal use by CONNECT, INPUT, OUTPUT and 
TRANSMIT.  The following is an example for a pseudo-terminal: 

TTY for file transfer:  22 [PTY7:] 
 (pseudo-terminal loopback to VENTI2::, KERMIT-20 is LOCAL) 
  Handshake:        None 
  Flow-Control:     None 
  Escape Character: ^\ 
  Parity:           None 



  Duplex:           Full 
  Break Simulation: Disabled 
  PTY Connection:   Online 
  Pseudo Speed:       19.0549 MBd 
  Virtual CFIBF%'s: 57 
  SOUTR%'s Issued:  23 
  SOUTR% Bytes:     424 
  Max SOUTR% Len:   150 
  Network BIN%'s:   64 
  Network SIN%'s:   52 
  Network SIN% Cnt: 3509 
  Network SIN% Max: 249 
  Controlling Type: PTY [Parity] 
  Pseudo Speed:       19.0549 MBd 
  Input Buffers:    1 
  Output Buffers:   1 

The following counters are kept on behalf of the operation of a virtual terminal being driven by 
direct user activity on a local terminal. 

Terminal BIN%'s 

This is when a single character is read from the local terminal for transmission over the network 
link. 

Virtual CFIBF%'s 

The Tops-20 buffer clearing JSYi (CFIBF% and CFOBF%) do not work on a network connection 
that is not using a physical line.  The data must be read and discarded.  This is the count of the 
total characters 'cleared' in this way. 

Buffer CFIBF%'s 

Kermit-20 uses buffered network I/O to implement the INPUT and OUTPUT commands.  Kermit 
holds any remaining characters after a successful search in case other INPUT commands are 
given.  On a CLEAR command, this contains the total of how many of those characters were 
removed.  

This data is different from a Virtual CFIBF% as it has already been read, the result of the CLEAR 
being merely that INPUT's buffer counter and pointer were reset. 

Virtual BOUT%'s 

This is when a single character is sent over the network line as a result of being read and no 
further terminal input being available.  In this case, a SOUTR% must be used for a single byte to 
push the data over.  This has more overhead than other cases. 



SIN%'s Issued 

If input is detected on the local terminal after it has woken up from a BIN%, a check is made for 
any type-ahead.  If any exists, it is captured with a counted SIN%.  This is the number of times 
that has happened. 

SIN% Bytes Total 

Total number of type ahead characters we were able to capture with a SIN. 

Max SIN% Length 

The maximum size of the type ahead that we've seen.  On a fast or lightly loaded machine, this 
number may not be very high.  The more data captured this way, the less any data may be in a 
front end, thus avoiding instability. 

SOUTR%'s Issued 

Total times we've used a SOUTR% to push captured type ahead.  This does not include the 
SOUTR% used to push a single character. 

SOUTR% Bytes 

Total characters that have been written to the network as a result of data produced by 
typeahead activity. 

Max SOUTR% Len 

The maximum number of characters that have been able to be written using a SOUT%  This 
shows the best case conditions of capturing type-ahead.  The number will be artificially high in a 
batch job because the batch controller issues text a line at a time. 

The following counters are kept on behalf of the network input being done while operating the 
remote connection. 

Network BIN%'s 

This is when a single character is read from the network. 

Network SIN%'s 

When a character is read from the network, a check is made for any additional data that might 
be available.  Any such data is read with a single SIN%, which cuts down on JSYS overhead.  This 
is the total number of times Kermit has been able to do that. 

Network SIN% Cnt 

This is the total number of characters that were captured by detecting additional data. 

Network SIN% Max 

This is the maximum number of characters that could be read at once. 

DEFINE (Enhanced) 

DEFINE [macroname] | ["macroname"] 



[ /macro-switch ] | [set-parameters] 

or top level switch,  

DEFINE /COMPACT | /DUMP | /MAP | /RESET | /SAVE | /SUMMARY 

A macro switch may be one of the following: 

/DUPLICATE | /RENAME | /UNDEFINE 

Define a "SET macro" to allow convenient association of one or more SET parameters with a 
mnemonic keyword of your choice. 

The set-parameters are a list of one or more SET options, separated by commas.  If you use 
Kermit-20 to communicate with several different kinds of systems, you may set up a macro for 
each, for instance: 

DEFINE IBM PARITY MARK, DUPLEX HALF, HANDSHAKE XON, SEND PACKET-LENGTH 80 
DEFINE UNIX PARITY NONE, DUPLEX FULL, HANDSHAKE NONE 
DEFINE TELENET PARITY MARK 

You may then type SET IBM, SET UNIX, and so forth to set all the desired parameters with a 
single command.  It is convenient to include these definitions in your KERMIT.INI file. 

Putting the macro name in double quotes allows the use of escape recognition of the rest of the 
SET parameters.  Similarly, question mark ("?") can then be used to get a list of the available set 
parameters.  This can ease the process of creating macros. 

You may redefine an existing macro in the same manner as you defined it.  You can undefine an 
existing macro by typing an empty DEFINE command for it, for instance: 

DEFINE UNIX 

Be aware of the following: 

Macro definitions may not 'nest'.  This means that they may not include other macro names as 
set arguments. 

Using a quoted macro name when defining will allow you to define macros that consequently 
can not be parsed.  One example would be the use of embedded spaces or tabs, such as "my 
macro". 

If this happens, then the macro may be removed by specifying the quoted name with the 
/UNDEFINE switch.  It is best to keep macro names being alphanumeric with a dash ("-") or 
underscore ("_") as a separator character. 

/COMPACT 

DEFINE /COMPACT 

If Kermit gives an error that the macro buffer is full, you can use the /COMPACT switch to run 
the garbage collector.  The delay for this action is not normally noticeable. 



/COMPACT will give some statistics to indicate what has been reclaimed, if anything.  For 
example, a macro table that started out with 11 macros, with four being undefined produces 
the following: 

Kermit-20>DEFINE/COMPACT 
Before: Macros: 7 used, 114 remaining. 
Available storage: 10705 characters 
After:  Macros: 7 used, 114 remaining. 
Available storage: 11315 characters 
Elapsed: 0.00097 (TOD: 0), CPU:  0.00094 

The timing figures indicate that 970 microseconds were spent doing the /COMPACT, of which 
940 microseconds were processor related.  Elapsed time is also known as "wall" time. 

The /COMPACT switch is unnecessary if no macros have ever been undefined or redefined. 
Issuing it in that case will do absolutely nothing other than expend processor time, while at the 
same time providing no benefit whatsoever. 

Similarly, issuing two or more /COMPACT switches in a row will not provide any further benefit. 

Issuing a /COMPACT after a /RESET does nothing other than inform you that there is nothing to 
compact. 

It is possible to define the maximum number of macros while still having remaining macro 
memory if the macro names and bodies are relatively short.  In this case, while /COMPACT may 
be able to release storage for macro names and bodies, you will still not be able to DEFINE or 
/DUPLICATE a new macro because the limit being exceeded is the number of entries in the 
macro keyword table. 

/DUMP 

DEFINE /DUMP output file specification 

The macro table may be written directly to disk in a binary format with the /DUMP switch, 
which takes an output file argument.  /DUMP writes exactly what is in the table, so it will not 
write the smallest file unless you /COMPACT the table, first. 

The binary file may be read with the /MAP switch.  A smaller binary file can both be written 
faster by /DUMP and processed faster by /MAP.  The size of the file produced by /DUMP bears 
little relation to what is created with /SAVE. 

If you have a large number of macros, then it may pay not to define them in the KERMIT.INI file 
but rather have your KERMIT.INI map the binary definitions which can then immediately be 
used with no further parsing.  The character definitions themselves can always be extracted 
with /SAVE. 

The format of the binary file is designed for speed, not size.  It can be used directly by Kermit.  A 
file produced by /SAVE may actually be smaller, but takes far longer to process. 

You may only dump to file structures.  Dumping the file to NUL: is also allowed, but does not do 
anything of obvious value and is only provided for debugging and checkout. 



Although the binary file is not human readable, you can find out how many macros are in the 
file by looking at the byte count in a directory listing, which is the number of macros contained 
therein, not the number of bytes.  This example shows a binary file with 7 macros in it. 

  STAR:<KERMIT.K20MIT> 
                          PGS Bytes(SZ)  Write                Writer 
 
 K.BIN.5;P777700            1 7(0)       22-Jul-2022 22:47:59 SLOGIN 
 
 Total of 2 pages in 1 file 

The word size is 0 because it is meaningless, the contents of the file having varying byte sizes.  
This will also prevent both Kermit and the EXEC from typing the file, which will produce nothing 
but gibberish that runs the risk of locking up smart terminals and terminal simulators. 

If you wish to know what is in the file, use FILDDT and look at k20mac. 

/DUPLICATE 

DEFINE old-macro-name /DUPLICATE new-macro-name | "new-macro-name" 

Takes the text associated with the indicated macro and creates a new macro whose name is 
specified after the /DUPLICATE switch and sets that new macro's body to be a copy of the text 
of the originally specified macro.  For example: 

Kermit-20>SHOW IBM 
  IBM = parity mark, duplex half, handshake xon 
Kermit-20>DEFINE IBM/DUPLICATE MBI 
Kermit-20>SHOW MBI 
  MBI = parity mark, duplex half, handshake xon 

You can only duplicate an existing macro.  The new macro's name can not be that of an existing 
macro.  The new macro name may be specified inside of double quotes to allow for question 
mark and escape recognition after the field. 

/DUPLICATE will optimally use macro storage space and thus it is not necessary to do a 
/COMPACT, afterwards. 

/MAP 

DEFINE /MAP input file specification 

The binary file created by /DUMP can be read with the /MAP switch.  It is substantially faster to 
use the /MAP switch on startup than to define all your macros in a TAKE file. 

Kermit does a few checks on the binary file, but these are not exhaustive.  If a binary file 
becomes corrupted, it can crash Kermit. 

If this is a concern, you should also /SAVE your macros for recovery.  If you have not done this, 
you may be able to fix things with FILDDT, the first part of the binary file being a TBLUK% table. 

You can /MAP from NUL:, but this only does the equivalent of a /RESET and is provided for 
debugging and checkout purposes. 



/RENAME 

DEFINE old-macro-name /RENAME new-macro-name | "new-macro-name" 

Changes the name of an existing macro, the text of the macro being entirely unchanged.  It is 
different from /DUPLICATE in that the existing macro name will no longer exist and its text is 
not duplicated having been assigned to the new macro name. 

Thus, the old macro text may now only be used by the new macro name.  For example: 

Kermit-20>SHOW IBM 
  IBM = parity mark, duplex half, handshake xon 
Kermit-20>DEFINE IBM/RENAME MBI 
Kermit-20>SHOW MBI 
  MBI = parity mark, duplex half, handshake xon 

At this point, you can not do a SET IBM because the macro name IBM no longer exists; you must 
do a SET MBI, instead. 

You can only rename an existing macro.  The new macro's name can not be that of an existing 
macro.  The new macro name may be specified inside of double quotes to allow for question 
mark and escape recognition after the field. 

/RESET 

DEFINE /RESET 

The /RESET switch may be used to remove all macro definitions, resulting in a pristine macro 
table that is completely empty.  Thus, the maximum macros, names and bodies will be 
available, viz: 

Kermit-20>DEFINE /RESET 
Kermit-20>DEFINE /SUMMARY 
Macros: 0 used, 121 remaining. 
Available storage: 12150 characters 

Doing a /COMPACT after a /RESET does nothing useful because there is nothing to /COMPACT. 

/SAVE 

DEFINE /SAVE output file specification 

You can save the macro table into a human readable (ASCII) file using the /SAVE switch, which 
takes an output file argument.  It writes the macro table as a series of DEFINE commands, which 
can subsequently be used in a KERMIT.INI file or changed with a text editor. 

It is not necessary to do a /COMPACT before a /SAVE; the resulting file will always have the 
exact same size as the undefined macro text will never be written.  This is in contrast to a 
/DUMP where doing a /COMPACT beforehand can matter significantly. 

The size of the file produced by a /SAVE does not bear an immediately obvious relation to what 
is created with /DUMP and it is not useful to compare the two as they are designed for 
different purposes, the former for readability and the latter for speed. 



You can only /SAVE to file structures with two exceptions: 

1. You can save to your currently logged in terminal (TTY:) to see what would be written to 
disk.  The information displayed is effectively no different than what you would see from 
a SHOW MACROS.  This functionality is primarily used for debugging and checkout. 

2. You can /SAVE to NUL:, but this does nothing particularly useful and is only used for 
debugging and checkout. 

You can not /SAVE to any other device nor someone else's terminal nor any other line, even if 
you have assigned that line. 

/SUMMARY 

DEFINE /SUMMARY 

The /SUMMARY switch provides a brief analysis of current macro table resource usage, as 
follows: 

Kermit-20>DEFINE /SUMMARY 
Macros: 11 used, 110 remaining. 
Available storage: 10705 characters 

/UNDEFINE 

DEFINE existing-macro-name /UNDEFINE 

Another way remove a macro is to follow the macro name with an explicit /UNDEFINE switch.  
Therefore, the following two commands do the same thing:  

DEFINE UNIX 

DEFINE UNIX /UNDEFINE 

If you've managed to define a macro name that turns out to be quirky in some way or 
completely unusable, you can put it in quotes to undefine it, for example: 

DEFINE "WRONG WAY" /UNDEFINE 

Be aware that undefining a macro does not automatically reclaim the memory for reuse as this 
operation is relatively computationally expensive and, since most macros are read from the 
KERMIT.INI file, is not expected to happen frequently, if ever. 

See the /COMPACT switch for information on handling out of memory situations. 

GET (Enhanced) 

GET remote-filespec | "remote-filespec" [ local-filespec ] 

For use only when talking to a remote KERMIT server. 

When running as a local KERMIT (I.E., when communicating with a remote KERMIT over an 
assigned TTY line, which you have specified with the SET LINE command or having done a SET 
HOST command), you may use the GET command to request the remote KERMIT server to send 
you the specified files. 



The remote-filespec is any string that can be a legal file specification for the remote system; it is 
not parsed or validated locally.  As files arrive, their names will be displayed on your screen, 
along with "." and "%" characters to indicate the packet traffic.  You may type Control-A to get a 
brief status report, ^X to request that the current incoming file be cancelled, or ^Z to request 
that the entire incoming batch be cancelled. 

If the remote KERMIT is not capable of server functions, then you will probably get an error 
message back from it like "Illegal packet type".  In this case, you must connect to the other 
Kermit, give a SEND command, escape back, and give a RECEIVE command. 

Syntax: The first form of GET command accepts an arbitrary string, terminated by a carriage 
return.  The string specifies a file or files in the syntax of the remote system; this may be 
enclosed in double quotes. 

The normal DEC-20 command characters for help (?), comment delimitation (! and ;), and file 
indirection (@) are enabled at the beginning of the field, you can only enter filenames starting 
with one of these characters by "quoting" it with a Control-V, which is discarded before sending 
the string to the remote system.  Otherwise, using double quotes may result in a more 
consistent parse. 

If you want to store the incoming file name with a different name than the remote host sends it 
with, just type GET alone on a line; Kermit-20 will prompt you separately for the source 
(remote) and destination (local) file specification.  If more than one file arrives, only the first 
one will be stored under the given name; the rest will be stored under the names they are sent 
with. 

The second form of the command can be used gain the same functionality on a single line by 
enclosing the remote file specification in double quotes.  Escape recognition can then be used 
on the local file specification.  The following example gets an ITS file "foo bar" from the baz 
device and stores it locally as foo-bar.txt: 

Kermit-20>GET "BAZ;FOO BAR" FOO-BAR.TXT 

The local file must be stored on a mounted file structure to which the user has access.  It is 
possible to store to NUL:, but this does nothing but throw the data away and is only used for 
testing and debugging purposes. 


