
 
 
 
 
 
 
 
 
 
 
 
 

 
Kermit Oral History Panel 

Jeffrey Altman, Bill Catchings, and Frank da Cruz 
 

 
Moderated by:  

Alex Bochannek 
 

Filmed by:  
Gardner Hendrie 

 
Recorded: April 6, 2012 

Watson Laboratory, Columbia University, New York 
 
 
 
 

 

 
 
 
 
 
 
 
 

CHM Reference number: X6479.2012 
© 2012 Computer History Museum



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 2 of 57 
 

Editor’s Note: Extensive commentary and additional notes were supplied by Frank da Cruz after 
this interview took place. These instances are denoted by square brackets with the initials “FDC” 
followed by his commentary in italics. 

Alex Bochannek: Welcome. Today is Friday, April 6, 2012. We are recording this oral history panel on 
the file transfer protocol, Kermit, for the Computer History Museum's archive. On the panel we have Frank 
da Cruz, Bill Catchings, and Jeffrey Altman. I'm Alex Bochannek, a curator at the Computer History 
Museum [CHM]. Also present is CHM Trustee Gardner Hendrie. Observing the conversation in the room 
are Bill Catchings' wife Susie and my daughter Cecily. Now, I would like to start with people just offering a 
brief biography, their full names, when and where they were born, how they came to the Kermit project 
and what they have done since. You can certainly include any sort of pivotal moments or influential 
people that you would like to mention. Why don't we start with Frank?  

Frank da Cruz: Okay. I was born in 1944 in Washington D.C. That makes me pretty old. I walked into this 
building when I was in my twenties and now look. I was a country boy. I lived in rural Virginia. I grew up in 
the segregated south. The place where I lived isn't there anymore. It's all glass and steel now. Then I was 
an Army brat and I lived in Germany on Army bases. Then, I was in the Army myself for three years and I 
lived in Germany on Army bases again. Then [after six months in Washington DC as a musician] I came 
to Columbia. I was at Columbia from 1966 until last year, 2011, so that's what? 45 years? I started 
working here at what was called the Computer Center in 1974. Before that, I was a student and I worked 
full time and went to school full time.  I actually paid my own way through Columbia. That's inconceivable 
now. What else is interesting? When I graduated from Columbia with a BS in Sociology, I had a little 
trouble finding a job and so I was a taxi driver. After that, a friend of mine whose mother worked here 
found a job for me in the engineering school. I was working in the engineering school just doing office 
work, but the professors took an interest in me. One of them, Lee (Leon J.) Lidofsky, said, “How would 
you like to write a computer program?” I said, “Okay.” Actually, I had had some training in the Army (Basic 
Machine Operations and Wiring Course, US Army Communications Zone, Europe, UDPRO School, 
Orleans, France), so my first exposure to computer programming was in 1965. It wasn't really a computer. 
It was an IBM [International Business Machines, Inc.] 407, an accounting machine you program with 
wires but it was a kind of programming. You read the input and do things to it and print out the results. In 
the Columbia engineering school, in the department where I worked, they had a minicomputer, a SEL-
810B that was about the size of this room with 16K of core memory. They had a PDP-8 that was about 
this big [tabletop size] whose only I/O [input/output] device was a 9-track magnetic tape drive. You had to 
program it from the switches.  They were running experiments all of the time. They were getting nuclear 
cross sections of all different radioisotopes. They would put some sample behind a pile of lead bricks. We 
used to handle lead bricks all of the time or paraffin because they were both good shields. Then put a 
counter and register all of the emissions and collect all of the data on the PDP-8's tape drive.  Then [we 
would] take the tape to the minicomputer and write big FORTAN [IBM’s Mathematical Formula Translating 
System] programs to analyze it. I enjoyed it, I enjoyed programming. One of the professors I worked for, 
Lee Lidofsky asked me how I'd like to have a full time job programming. I said, “Okay,” and it was at 
Mount Sinai Hospital in Manhattan, where he did some consulting. They had something called the 
Laboratory of Computer Science. I worked there for a while and I wrote some programs that were real 
interesting.  One of them was a database on a magnetic tape about anal fissures with a program that 
would do reports from these magnetic tapes. It was cool, actually, because I treated them like DECtapes 
[Digital Equipment Corporation random-access tapes]. Remember, DECtapes, the little tapes that spin 
back and forth? These big nine-track magnetic tapes were not designed for that.  

Bill Catchings: You wore them out?  

da Cruz: Yes. The most interesting thing that I worked on was a program that had to do with cervical 
cancer.  The problem was that the surgeons would treat cervical cancer by inserting radioactive needles 
into the tumor. They did this with their fingers. They were very exacting about the insertion to get it just 
exactly right. Then, they started to get disease in their fingers. The professor that I worked for had this 
brilliant idea; what if the doctor stuck the needles in real fast any old way just so long as they got into the 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 3 of 57 
 

tumor? Then, [they] took a stereo X-ray of the tumor, ran back to the laboratory—which was in another 
building—scanned the X-rays to figure out where the needles are in the tumor, calculate the dose 
delivered by each needle, and their overlapping doses and so forth. Then [they printed out] a list of times 
to pull out each needle to maximize the dosage to the tumor and minimize the dosage to the surrounding 
tissue. [They would then] run back to the operating room with the printout and follow the directions. This is 
on a PDP-11/20, which was also about the size of this room. We had an oscilloscope so you could look at 
the picture of the tumor. It was like an oscilloscope. It was a lot of fun and I liked it.  Except, I didn't like 
the doctors much because they didn't treat people very well.  Now, I was taking graduate computer 
science courses in the Columbia engineering school. [FDC: I suppose I should mention that eventually I 
wound up with a Master of Science degree from Columbia in Electrical Engineering and Computer 
Science.]  One of my professors, Howard Eskin, [who was also the Systems manager at the Computer 
Center], offered me a job and so that's how I got here. At first I was a systems programmer for OS/360. 
Since I had a background with Digital Equipment computers, I was chosen to be the one who brings 
timesharing to Columbia. We started with the PDP-11. Then, we worked our way up to the DECSYSTEM-
20 which is considered a mainframe. It was a huge computer that cost a million dollars and for four of 
them it cost $10,000 a month just for the electricity. We hired Bill and some other programmers. We were 
the systems group on the DEC-20. Everybody who ever worked on the DEC-20 will tell you it was just the 
most fun computer to work with. It was very popular in universities. All of the universities had them, the 
universities that you've heard of in connection with computing; CMU [Carnegie Mellon University], 
Stanford, MIT [Massachusetts Institute of Technology], and Rutgers and so forth. Although, some of them 
ran TOPS-10 [Timesharing/ Total Operating System] and not TOPS-20 [two different operating systems 
for the same architecture]. They formed a community so we got software from them that we used on our 
computers to do our job, to serve our users, and we would reciprocate by giving them software we wrote 
here. We would meet these people in person at DECUS [Digital Equipment Computer Users’ Society] 
conventions. It was kind of like a club.  

Bochannek: Let's talk about the user community aspect a little bit later. Let's switch to Bill. Can you 
introduce yourself and give us some background in how you came to the Kermit project? Frank just 
mentioned he had hired you?  

Catchings: I'll start from before he hired me. I always go by Bill Catchings, but actually my full name is 
William Baird Catchings III which is probably why I go by Bill Catchings. I grew up in New Jersey. I was 
born in 1958. I came to Columbia University in 1976 as a student. I always knew that I wanted to study 
computers. I'm really not exactly sure why but that's what I always knew I wanted to study. It was just 
what was in my head. I came here to study computers. First introduced to, I think, it was the PDP-11. 
Somehow in those days, you could sneak into the lab and actually just go play with the computers. I 
worked as a student. They had positions for students working here helping other students with their 
programs. Then, when I graduated in 1980, I came to work with a small group—three of us got all hired at 
the same time to work here at the university. Crucially, I often say, Columbia University but this was not 
the computer science department. You called it the computer center. I mean I think back in those days it 
was CUCCA: Columbia University Center for Computing Activities.  

da Cruz: It's gone through many names.  

Catchings: When I was here, it was CUCCA.  

da Cruz: Everybody called it the computer center.  

Catchings: Yes. As Frank said, we were here to maintain the computers. I know I worked on a PDP-11 
running RSTS [Resource Sharing Timesharing System] which was one of the stranger computer 
operating systems since it was all interpreted rather than compiled and it was all written in BASIC 
[Beginner’s All-purpose Symbolic Instruction Code]; hard to believe a computer operating system written 
in BASIC. Then we got the first DEC-20  and each of the three of us got different projects to do. I think 
mine was to do a bulletin board program. The other two people—I don't know that they ever actually 
finished their projects but I finished mine first. I got to do the next project and that project was what turned 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 4 of 57 
 

out to be Kermit. We basically, at that point, just knew we needed to figure out a way for students—
student accounts would disappear between semesters—to move their data from one semester to another.  

Bochannek: Right, so we'll get into that in a second. When did you leave the project and what have you 
done since?  

Catchings: I left twice. I kept trying to get out of here. I left first, I believe, in 1982-'83. I left for a year and 
worked on Wall Street at Lehman Brothers, which later died. It's also died multiple times. After it died the 
first time, they got bought out by Shearson/American Express. I came back to work for Columbia for 
another year, worked on the Kermit project as well as some other things. Since then, I have been working 
in software development and in computer magazines like PC Magazine and PC Week. I worked for years 
as a writer for those magazines. Then, I worked developing benchmarks like Winbench, Winstone, many 
of the main benchmarks in the PC [personal computer] industry were defined by our group, Ziff-Davis 
Benchmark Operation. For the last ten years, I've been one of the co-founders of my company, Principled 
Technologies, where we do what we call fact-based marketing. It's basically helping computer companies 
to show what's good or better about their products than their competitors and that's where I am today.  

da Cruz: Just one interruption. There's a missing chair here. I've been here the whole time. Bill was here 
at the beginning. Jeff was here sort of towards the end. The middle is Joe Doupnik who is not here. 
There's a gap.  

Bochannek: We hope to do an oral history interview with him.  

Catchings: Can you just Photoshop him in or something?  

Bochannek: Jeff.  

Jeffrey Altman: My name is Jeffrey Eric Altman. I need to specify that at times because, going back to 
my days in elementary school, there's a famous comedian/actor named Jeffrey Altman, a producer 
named Jeffrey Altman and there are two very wealthy financial individuals here in New York City named 
Jeffrey Altman. I often frequently get their mail, their invitation to their White House Christmas dinners, 
things of that nature. One of the more hysterical confusions was in fifth grade, coming back from winter 
break, when my social studies teacher congratulated me and apologized for missing me on some TV 
movie that she apparently thought I had been starring in. My exposure to computers started from an 
extremely early age. My father was an electrical engineer, CS [computer science] faculty member first at 
Princeton University and then at Stony Brook University. We had modems in the house. We had printers 
in the house, teletype terminals. I think I was given my first computer somewhere around the age of 10 or 
11. I worked through TI-99/4As [Texas Instruments], Timex Sinclair's, Apple Is, Apple IIs, original IBM 
PCs and so on all in the house. My first paid programming gig was at the age of 14 or 15 which, given 
that I was born in 1966, makes it very early for my generation. My exposure to Kermit came from when I 
attended Stony Brook. Stony Brook was distributing, at the time in 1984, what they called Stony Brook 
Kermit which was essentially Joe Doupnik's MS-DOS [Microsoft Disk Operating System] Kermit wrapped 
with custom scripts for dialing into the Stony Brook University communication system I think to attain 
access to their VMS [Virtual Memory System] DEC systems. I was an undergraduate student. I was trying 
to avoid being a computer programmer. I wanted very, very hard to be anything but that except that 
programming came very easy to me. I went off to study astrophysics instead and that's what I was 
attempting to do.  

da Cruz: Like Joe Doupnik.  

Altman: Like Joe. [I was] attempting to do that at Stony Brook. I also was not a very good student. I was 
much more interested in the social aspects of college campuses; very active in student government, 
student polity association at Stony Brook at that time, the Stony Brook concerts. I came to run one of the 
big night clubs on campus that were student run as well as some of the fall festivals and spring festivals. I 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 5 of 57 
 

always made time for the social activities. I needed to avoid staying in the computer labs at two o'clock in 
the morning waiting for one of the three terminals to become available. Stony Brook had installed a 
ROLM telephone system across the campus. I figured out a way of being able to use an IBM PC portable 
with a modem, the ROLMphone, Kermit to be able to gain access to the VMS systems. I could sit in my 
room, doing my homework, ordering Domino's pizza—not drinking beer yet because I didn't start drinking 
alcohol until after I left college—listening to my music and hanging out with my friends, while all of the 
other classmates were staying up all night waiting desperately for a terminal to become free to submit 
their homework on. I started off sending in bug reports to Joe and making script additions. By the time I 
graduated in '89, I was already in the process of hacking on code and trying to work on the OS/2 version. 
I joined the Kermit project full time in 1995 [1994] in order to take the OS/2 version and produce a 
Windows implementation which we'll go into more detail later. I stayed with the project until 2002, when 
Columbia had a financial fallout from the Internet bubble collapse. There was a significant downturn here 
in the city after the Towers came down. Since then, I've founded two companies; Secure Endpoints Inc. 
and Your File System Inc. I'm sort of a serial entrepreneur at this point, very heavily devoted to open 
source technologies. I’m continuing to expand upon the things I've brought to Kermit in terms of secure 
Internet transfer of information.  

Bochannek: Before we go into the origin of Kermit, and Bill already started talking a little bit about that, 
maybe Frank, you can tell us a little bit about the significance of the building we're in. Where are we? How 
does this relate to the Kermit project?  

da Cruz: We'll start with the building that you were waiting in front of. That building had been a fraternity 
house; that's 612 West 116th Street. As World War II approached, Wallace Eckert, who was a Columbia 
professor, was drafted by the government to run the Almanac Office of the Naval Observatory for the war 
and produce all of the almanacs that were used by all of the ships and airplanes and some of the ground 
transportation to find where they were and to plot their courses, based on his work at Columbia in 
automating scientific calculations. He was, in my estimation, an important computer pioneer because he 
did a lot of things before anybody else did them. IBM asked him towards the end of the war to come back 
to Columbia and found what amounted to a computer science laboratory, the very first computer science 
laboratory. IBM bought the fraternity building on 116th Street. It was empty because all of the fraternity 
boys were in the war. He gave Eckert carte blanche to hire whoever he wanted and to get whatever 
equipment struck his fancy. He hired some of the best physicists and mathematicians that were to be 
hired. He had all kinds of IBM punch card equipment, but some of it was special custom souped-up 
versions. He had two relay calculators that were faster and more powerful than anything else on earth. He 
had two of the four or five that were built and the other ones were used in the military for ballistic 
calculations.  It's what is now IBM Watson Laboratory, which is now in Yorktown Heights. From its very 
first years, it gave computer science courses, which as far as I know were the first computer science 
courses, beginning in 1946 or 1947. By 1953, they had run out of space and they needed another 
building. They bought this building, which previously had been a women's residence for students and 
faculty of Barnard and Teachers College and Julliard, which was right down the street but has moved 
since. IBM occupied this building from 1953 to 1970. It had machine rooms, laboratories, and the other 
kind of machine room where you build machines: lathes, die cutting. Everything was in here. They had 
huge amounts of electricity coming in, giant ducts for cooling. They built some very significant computers 
here; among them was the NORC, the Naval Ordinance Research Calculator, in 1954 which at its time 
and for the next 10 years was the most powerful computer on earth. It was built one floor below us in the 
machine room in the back. They also built the SSEC [IBM Selective Sequence Electronic Calculator] 
which was probably one of the first computers, if not the first, that entered the public imagination because 
IBM put it in their headquarters building on Madison Avenue where I'm pretty sure it could be seen from 
the street. People would walk by and they'd see these giant blinking lights and spinning things. It was an 
incredible machine. They said, “Oh, we need to store stuff in some way so we can read it back.” They had 
these rolls of paper tape that weighed something like 2 tons each and they had 20 of them [FDC: these 
are not necessarily precise numbers]. All of this stuff spinning and bouncing and jumping up and down 
and blinking at the same time. People would see it and then you'd see cartoons in the newspapers of this 
giant computer and a little card would come out with the answer. They built that here. John Backus 
worked here. He was the chief programmer for the SSEC. I asked him if he thought that the SSEC was 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 6 of 57 
 

the first stored-program computer. He said, "Sort of." It mostly wasn't but it was possible to load a 
program into some registers, execute it in the registers, to modify them at the same time and mix data 
with the program.  

Bochannek: At what point did IBM move out of this building? Or was it a joint IBM Columbia facility?  

da Cruz: Well, in a sense it was joint IBM-Columbia because all the scientists were on the faculty. On the 
other hand, they were collecting patents for IBM like crazy. It was mixed. They stayed here until 1970 
[and turned the building over to Columbia, along with the 116th Street building]. I don't really know why 
they left. I actually remember when they were here. I was here when they were here but I didn't know it. I 
came into this building just a few years later and it was still littered with plug-boards and little plug-board 
wires, all kinds of card-oriented paraphernalia, but over the years all that  disappeared.  

Bochannek: Okay. Let's get back to the start of Kermit.  Bill started to talk about how he had the issue 
with users on the DEC-20 timesharing systems. Either of you just tell the story of how Kermit got started 
and how Kermit got its name. If you could try, what is Kermit? How can you define it?  

da Cruz: We'll start with how it started. The DEC-20s were not only well-beloved by us, the programmers, 
but also by the students and the faculty. These are the first interactive, well aside from RSTS, which was 
kind of a toy, these were the first general-purpose multi-language do-everything big, fast computers that 
were available to students and faculty.   

Catchings: No punch cards.  

da Cruz: Yes. You didn't have to stand in line waiting for a card punch and then stand at another line 
waiting to feed your cards into the card reader and then wait until the next day to get the printout which 
was this thick because it was a dump because there was a bug in your program and you had 20 pounds 
of hexadecimal numbers [to dig through]. It was friendly. It was very easy to use. It was intuitive. It was 
helpful. It had a sense of humor. It was the first instance of e-mail. No one [at Columbia] ever used e-mail 
before. [FDC: In fact, the very first e-mail software at Columbia was written for our PDP-11 RSTS system 
by Andy Koenig, but it was not widely used. On the DEC-20, everybody used e-mail.] Pretty soon, it had a 
bulletin board that Bill wrote which was a big deal.  In the ARPANET [Advanced Research Projects 
Agency Network], they had these things but we weren't on the ARPANET, partly my fault. In 1968, we 
made such a ruckus that the defense contractors didn't want to even come near Columbia. Columbia 
didn't get on the ARPANET until fifteen years later. The DEC-20 was very popular to the extent that we 
got our first DEC-20 in 1977 and by 1979 or '80, like Jeff was describing, there were huge lines waiting to 
get in the terminal room. There was even a large demonstration on campus for the administration to fund 
another DEC-20. We were always—every budget proposal, “Oh look at the usage figures, they're through 
the roof. It's so congested that blah, blah, blah.” The central administration would say, “Should I buy 
another one of these computers for a million dollars or should I buy whatever other thing?” and they 
always did the other thing.  

Catchings: Which wasn't the football team.  

da Cruz: Right. By this time, it had come to such a pass that it was so painful to use these computers that 
when you pressed a key it would take over a minute to get the echo back. That just increased the waiting 
time. They had to keep buildings open all night. We had terminal rooms and that was a whole other story 
just getting the space from different departments in schools to build terminal rooms in different buildings 
that were accessible to students. When we first got the DEC-20, we said IDs were free and anybody 
could get an ID, a student, faculty or staff and they would have it forever. A mere two years later, not 
being able to keep up with demand because we couldn't get funding for it, we had to find ways to control 
the access. It was an awful thing to do but we said, “Well, sorry, we're going to have to wipe your account. 
Instead of having a perpetual free personal ID, you get an ID that's associated with a particular class that 
you're taking.” At the end of the class, we wipe the ID. Then they said, “What do we do with our stuff?” 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 7 of 57 
 

Especially if you're in engineering, you go through the years of school creating little tools that you bring 
with you and you use them and you keep building on them term after term. If you lose it all every term, 
what are you going to do? [FDC: This was actually a step down from the punch-card days, because you 
could keep your card decks forever. Cards were free to everybody.] That's where the demand for Kermit 
came from. Students needed a way to archive their work. We began by looking at how we could do this. 
Is there some device we could put out there for them to use? We thought actually DECtapes would be the 
perfect thing, but the DEC-20 didn't support them. Maybe nine-track tapes. We'll put nine-track tapes in a 
terminal room. Those were—  

Catchings: They were finicky.  

da Cruz: Yes, they're very finicky. They're broken more often than they work and it takes days or weeks 
to fix them. Obviously, they're very expensive. Plus, a nine-track tape drive is bigger than a refrigerator. 
To get your stuff off it, you'd have to have it dedicated to yourself for half an hour. It wasn't practical. We 
considered some other things also, but kind of like that. DEC had some product that was a remote 
terminal controller that was a large minicomputer with an eight-inch floppy disk. They actually gave us 
one, but it never came to anything. What we finally decided was, “Well, why can't they just use their 
terminals to get their files on and off the computer?” In those days, microcomputers were just coming on 
the market and they had floppy disks. They had a screen, a keyboard, and a serial port just like a terminal. 
All you had to do was write a program for the microcomputer that acted like a terminal so you could 
replace the terminal with the microcomputer. This program would also have the ability to transfer a file, 
when used in conjunction with another program that we would write for the DEC-20. Then you could have 
a way to send files back and forth over your terminal connection and put them on the floppy disk or take 
them off the floppy disk and put them on the DEC-20. Obviously, when you do that you want the files to 
be correct and there's a lot that goes into that. Then also figuring into the equation, we had not only DEC-
20 mainframes, we had IBM mainframes which are completely different. There's nothing in common 
between them whatsoever. This one is uses ASCII [American Standard Code for Information Interchange] 
to represent text. The other one uses EBCDIC [Extended Binary Coded Decimal Interchange Code]. This 
one has a stream-oriented file system. That  one has a block-oriented file system. This one uses 
asynchronous communication. That one uses synchronous. We had to design a protocol that took all of 
the differences into account. Also, that when a terminal is talking to a computer, it's not a transparent 
connection. When I'm sitting at a terminal and I say, “Oh, woops, I made a mistake, delete,” and then the 
computer says, “I have to go delete all of those characters and put spaces.” Or if you type on the DEC-20; 
for example, if you type Control-T, it would print a little report saying what's happening. Or if you type 
control-C, it would interrupt the current process, make it stop.  Therefore, you couldn't put all conceivable 
byte patterns into whatever kind of messaging we were going to use for file transfer.  

Bochannek: The question was about the choice of the [Intertec] Superbrain; why was it chosen? Then 
I'm also looking at the Kermit DEC-20 Superbrain file interchange document that both Bill and Frank 
wrote in '81. The follow-on question is; what was the level of expertise in the student population with 
these types of machines? What a floppy disk is had to be explained in this document.  

da Cruz: I don't think so. You know how kids now can use any kind of contraption? Well, they could then 
too. These floppy disks weren't a mystery.  

Bochannek: Okay. Just being conservative by having definitions.  

Catchings: On the other hand, not everybody—now everybody has a whatever in your house. Most 
students wouldn't come from a home—they were nowhere. Microcomputers, at that point in time, the 
reason we picked a company you've never heard of, was because there were no companies you had 
heard of other than maybe Apple that existed then.  

da Cruz: Apples were really scarce.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 8 of 57 
 

Catchings: Yes, you mentioned Apple I. I'm actually skeptical because Apple I's—there were not many of 
them.  

Altman: We had an Apple I. In my home, our closet was a museum similar to what we have across the 
hall [FDC: at this point all of my old equipment and artifacts were piled up in the hall outside the 
conference room, most of this was eventually discarded]. We had an Apple I which had, I believe, 8K of 
memory in that machine. After about a year-and-a-half, my father bought an Apple II and then we had an 
Apple II plus. We always had one of the first Apple five megabyte hard drives, which cost about $6,000 at 
the time, because it was just too annoying—talking about tapes you would save your program off on a 
cassette tape. We would have to fiddle around with the tone control because you had to record at one 
tone setting and play back at a different one in order to get the Apple II to actually read the data back off 
of it.  

da Cruz: That was the other thing we looked at. IBM had some personal computers before they had the 
PC and those had cassette tapes [IBM 5100 “SCAMP”]. We had some of those computers. They were 
just too obscure and expensive.  

Catchings: They would have needed the real manual.  

<break in audio>  

da Cruz: We wanted something that was familiar and intuitive. The command language of CP/M [Control 
Program for Microcomputers] is really like a DEC user interface. It's like RT-11 [Real Time] or TOPS-10, 
which is kind of familiar to people who used the DEC-20 because the DEC-20 is part PDP-10—half of its 
software is from the PDP-10. It has things like PIP [Peripheral Interchange Program] and whatnot just like 
CP/M. Joel was the resident hobbyist and he knew all about these new microcomputers. We said, “Which 
one do you think we should get?” We looked at the other ones and some of them had detached 
keyboards or other separate pieces.  

Catchings: Which is not good with students; pieces that can disappear need to be discouraged.  

da Cruz: Exactly. This was a one solid chunk that weighed 65 pounds and you couldn't walk out with it. 
You have it now. It's a tank.  

Bochannek: I'm sorry, what is Joel's full name?  

da Cruz: Joel Rosenblatt. He's actually been here longer—he was here when I came and he's still here. 
There's a couple of people like that. Everybody else—I walk around the building and I don't know who the 
heck they are. [FDC: At this point I went upstairs to look for Joel but he wasn’t in.] 

Bochannek: Was the decision made to buy microcomputers for the student pools first? Or was it at the 
same time as the file transfer issue became?  

da Cruz: It was all together.  

Catchings: Without the file transfer, it was more expensive than a terminal so there was no point.  

Bochannek: Right. But it wasn't part of a microcomputer programming class or anything like that?  

da Cruz: No. It was only for Kermit. That's all it was for.  

Catchings: How many did we get originally? Two?  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 9 of 57 
 

da Cruz: Just two.  

Catchings: One to write the code on and one to put into use.  

da Cruz: We eventually had two of them out in the field. It was enough. If they had wanted more we 
would have bought more.  

Bochannek: Who were the primary users for this?  

da Cruz: Students.  

Bochannek: If there are only two, were there long lines? Did people have to wait?  

da Cruz: Honestly, I don't know. We worked in this building but they were on campus which is a ways 
away.  

Bochannek: Only two machines, you said.  

Catchings: Yes, at least initially. I'm trying to think the biggest computer room had maybe 16 stations in it 
or something. For all of the—the DEC-20 supported 60 people at a time, maybe 100. When it was 100, is 
when it was really slow. The community of people who were current at that point using it at a time, a 
couple seemed to be enough at least initially.  

da Cruz: Yes. This is 1981. You know what else happened in 1981, the IBM PC was announced. No 
sooner had we made Kermit for—well, backing up—so the first Kermit, like we were saying in the e-mail—
First, I was meeting with my boss Howard Eskin and some of his doctoral students. For two years, we 
were talking about this problem. Then, finally, we decided that we should have microcomputers and do it 
that way. Then, it was left to me and my group to come up with how to do it. It was Bill and I. The best 
way to characterize it was that I did the research, went out to the other institutions and talked to different 
people to find out what they were doing. There were some other places that were confronting the same 
problem. Also, searching the literature so I basically had a stack of literature and I had some software 
source code listings from different places.  

Catchings: Searching the literature was a lot harder then.  

da Cruz: Yes, right. I turned it over to Bill. Bill; he was a very energetic young man.  

Catchings: It was a long time ago.  

da Cruz: I wanted the thing to follow the layered model of data link layer and transport layer, not session 
layer, not network layer as well, but the layers that you need.  

Catchings: Yes, we skipped from layer three to seven. I think there was some missing in there. [FDC: 
There was no network layer because it was point-to-point protocol. There was no session layer because 
the whole concept of a session wasn't well understood and as far as I know still isn't.] 

da Cruz: Following that, it came up with a packet where the outermost parts are the datalink layer. Then, 
the next ones are the—  

Catchings: Yes, they were layers.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 10 of 57 
 

da Cruz: You strip them off until you come to the data as you progress up the protocol stack. That way 
you get framing, error detection, and sequencing, so the packet receiver can tell if it was damaged and 
request retransmission. It could also tell if it got the wrong packet and take action to request 
retransmission of the packet that it needs.  

Bochannek: You mentioned earlier the challenges dealing with the DEC-20 and the IBM mainframe side 
of things. One of the key features of the current protocol is the use of simple ASCII characters in the 
protocol stream. One of the references that I've seen and I believe that was part of the e-mail 
conversation we had before this oral history, is that TTY [UNIX terminal] FTP [File Transfer Protocol] that 
was done at Stanford Medical School by Bill Yeager but also DIALNET that was done at SAIL [Stanford 
Artificial Intelligence Lab] and then Utah Small FTP were three of the protocols that you had considered. 
Those are the three that you mentioned in the Byte magazine article. Do you recall specific influences 
there?  

da Cruz: I might have the names mixed up. I know that the one that influenced me most was the one 
from the University of Utah. That was strictly lines of text. In fact, not just text, I think it was only digits and 
upper case letters. That's all they used. The code space was 36 symbols, and 256 symbols had to 
mapped to 36, which was pretty inefficient, obviously. Safe, but inefficient. The design that Bill came up 
with was more efficient. It used all of the printable characters of ASCII; that's 96 or 95, plus two control 
characters. With that you could encode any eight-bit bytes. If you're transferring an ASCII text file, it's 
almost 100 percent efficient. If you're transferring a binary file that has a uniform distribution of byte 
values about one third of it would go through as clear text and the rest would be doubled. In those days, I 
think it was more common to transfer text files. I made a point in the e-mail about the difference between 
our world and the BBS [bulletin board system] world. In the BBS world, PC-to-PC they were sending 
mostly binary files and they didn't concern themselves with any kind of conversions or encoding because 
they didn't need to. Whereas, we had to because we were going between unlike platforms, 
microcomputers, DEC mainframes and IBM mainframes and any two of them had to be able to 
interchange both text and binary data over connections that were not transparent to 8-bit bytes or even to 
control characters. [FDC:  To clarify, we did not study the other protocols in depth or look at the code at 
all, we mainly were just encouraged that similar things were being done at sites we respected, but we had 
a different set of requirements and constraints—such as having IBM mainframes to consider—so none of 
the other protocols or software would have been of use to us.] 

Bochannek: Let me interject one other question about the DEC-20 environment. You've commented on 
how well liked it was. The Kermit user interface is very much like a TOPS-20 EXEC style.  

Catchings: Pretty much exactly like it.  

Bochannek: Right, there's a clear—  

Catchings: That would probably be my fault.  

[FDC: The TOPS-20 command parser was a revelation to all those who had suffered with unhelpful, 
cryptic text-mode user interfaces (that you couldn't use without a manual at your side), as well as to those 
who had to grovel through endless verbose text-mode menus, especially on slow serial connections. It 
was a combination of both, that penalized neither the novice user, nor the experienced user, incorporating 
two novel concepts: keyword completion (so you didn't have type every command word out in full) and 
"menu on demand" so you could get a list of possibilities at any point in a command if you did not know 
what to do, without losing what you had typed so far, but without having menus forced upon you. We 
have Dan Murphy to thank for all that. The post-DEC-20 world still hasn't caught up with it.]  

Bochannek: —connection there. Even in the Kermit book, the appendices looked very much like a DEC 
handbook where you have the powers of two tables, and so forth. Is that a direct reflection of that 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 11 of 57 
 

environment? Do you feel that you were really stepped into the DEC world and that's just really the 
influence?  

Catchings: Yes.  

da Cruz: Yes.  

Catchings: That's what we did. That's what we loved. That was the thing. It was the computing milieu we 
were in and we really liked it. Our user community really liked it. The weird thing is the first version of 
Kermit as best I recall was not between—there was no microcomputer at all. The strange thing is we had 
two DEC-20s, these two big massive blocky stuff.  

da Cruz: No, no, one DEC-20.  

Catchings: We actually used one DEC-20 with two versions of Kermit to communicate across a null-
modem cable that connected two of its serial ports. So we did it first on one machine talking back to itself, 
but this was a way to transfer even between mainframes. It was pretty strange because networks were—
well they weren't. [FDC: It’s worth nothing that even in the earliest days, it was possible transfer files, as 
Bill suggests, between the DEC-20 and the IBM mainframe with Kermit and I’m pretty sure I remember 
doing just that.] 

da Cruz: Well, there was DECnet. [FDC: DECnet was the proprietary Digital Equipment Corporation 
networking method that allowed most (but not all) DEC computers to communicate with each other]  

Bochannek: Right. That was actually the next question. Did you think of Kermit as a long-term solution to 
a problem? Was this a stopgap until networks became more affordable, more widely spread?  

da Cruz: [FDC: I should have said: “If you’re asking if I foresaw the ubiquity of the Internet, the answer is 
no.”]  I didn't think of it either way. I mean we were just having so much fun. First, we did it and it was 
received. Let me back up a little. 1981, we had just done the version between the Superbrain and the 
DEC-20. Then, almost immediately, a guy at DEC took the Superbrain version and modified it to run on 
the DEC VT-180 which was a—  

Catchings: Bernie Eiben.  

da Cruz: Yes, Bernie Eiben. It was a VT-100 terminal—  

Catchings: With a floppy drive nailed to the top.  

da Cruz: Exactly. They wrote it up in all of their literature. They used to have newspapers that they sent 
everybody. Then, everybody found out about Kermit  and they started bugging us about it. They said, “Oh, 
that's so cool, but we have a VAX [a DEC 32-bit minicomputer, VAX stands for Virtual Address Extension]; 
do you have it for the VAX?” We said, “No, but you could write it yourself.” We had written the 
specification for the protocol so they did that. Then, they sent it back to us and they said, “Look, we did it 
for the VAX.” Then, somebody said, “Well, can you do it for Data General?” “Well, we don't have a Data 
General.” Pretty soon, people were sending us different Kermit versions from all over the world, for all 
different kinds of computers. The CP/M version started out, as I recall, as a monolithic program.  

Catchings: It would only run on the Superbrain. That was the time it was where you didn't have—it wasn't 
like the Unix version that will run on all of these different computers. No, it ran only on the Superbrain. 
Then, somebody had an OSI [Ohio Scientific Inc.]. Somebody had this oddball CP/M machine because I 
remember having to go over to his lab, one of the labs here and recode it to make it work and there was 
no manual and so you're just pushing bytes out and seeing if they're showing up on the particular port.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 12 of 57 
 

da Cruz: That blue box that's in the picture, it was right there across the hall until a few months ago. That 
was Bill's line analyzer he carried with him down to the laboratories and watched the bytes go by.  

[FDC: An Atlantic Research Corporation Interview 30A Data Analyzer from 1980 or so, about the size of a 
suitcase.]  

Catchings: You talk about the long-term stuff and I don't want to claim that we were so naïve that we 
didn't think about that. The point is, we defined this protocol and then it was a coding exercise. For me, a 
coding exercise was cool. You run it on this one and you run it on that one and you figure things out. We 
didn't have plans of how this was going to take over the world. We had the specific need. Then, there 
were a lot of needs in different departments inside the university. They had some level of priority. They 
had a VAX over in the chemistry department. There were different people. It seemed like all I was ever 
doing was running over to one lab or another trying to help them get their version of Kermit.  

da Cruz: That's right. A little later, when you wrote the CP/M-86 version and then in the linguistics 
department there was the professor, Marvin Herzog, who wascompiling the   Language and Culture Atlas 
of Ashkenazi Jewry (LCAAJ). Catchings: Who knew?  

da Cruz: He was using Victor 9000 computers; do you remember this?  

Catchings: Vaguely.  

da Cruz: You did it. We went over and we spent time with him. These Victor 9000s were the only 
computers in those days that you could see Hebrew writing (which is used also for Yiddish) or Russian 
writing on the screen. In this country, anyway. I think they were from Sweden or some place.  

Bochannek: I noticed that Jeff seemed kind of eager to jump in.  

Catchings: I'm sorry. You were pretty involved at this time.  

Altman: You're still predating me. At what point did Joe get involved with MS-DOS Kermit? My first 
interaction with it was in 1985.  

da Cruz: Yes, I'll come to that. All of this stuff was happening. Then the IBM PC was announced. 
Columbia, in those days, was still pretty chummy with IBM. I think there were some years where 
Columbia was IBM's biggest customer. The day that we heard that PC was announced, the computer 
center business manager here on this floor ordered 20 PCs sight unseen. He gave several of them to 
some high-profile professors. The professors said, “What are we going to do with these? All of our data is 
on the mainframe. That Kermit thing, that Kermit thing, we need that Kermit thing for these PCs.” It came 
down from on high, “Get that Kermit thing out now.” It came down the food chain until it landed on Bill.  

Catchings: I actually think I might have refused to do the IBM PC version. I'm not sure.  

da Cruz: He basically did it in one sitting. He just put the monolithic Superbrain version into  EMACS 
[Editing Macros, the text editor from Richard Stallman at MIT, now known as GNU EMACS] and said, 
“Change this to that, change this to that,” and then you gave it to Daphne, right?  

[FDC: Everything was written in assembly language in those days, so he was changing 8080 instructions 
into 8088 instructions.  Here we are discussing the original program for the IBM PC, which was called PC 
Kermit, that eventually became the MS-DOS Kermit program that was licensed to IBM and AT&T other 
companies, published in books, etc.  It was originally called PC Kermit because it was for the IBM PC, but 
when variations were produced for other, incompatible MS-DOS PCs, the name was changed to MS-DOS 
Kermit.]  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 13 of 57 
 

Catchings: Yes. Daphne Tzoar.  

da Cruz: Then she was the public face of MS-DOS Kermit for the first year or two. It was a big deal 
because not even IBM had a way for their PC to communicate with their other products. They actually 
licensed Kermit from us to provide to their own customers. I think I sent you an IBM packaging.  

Bochannek: Yes, you did.  

da Cruz: Somewhere I have it written down. There's a book that three of these professors collaborated 
on where they were using their PC's at home and they were sending their chapters back and forth to the 
DEC-20 where they had a common space for the working copy of the book.  

[FDC: It was "The Scientific Experience" by Herbert Goldstein, Robert Pollack, and Jonathan Gross. This 
marked a turning point in computing at Columbia University with desktop computers being used to do the 
real work, and the central computers used only for communication, sharing, and archiving, pretty much 
the opposite of what we had designed Kermit for, and yet Kermit was perfectly suited for it. Anyway, this 
book was the reason for the rapid development of MS-DOS Kermit for the IBM PC.]  

Bochannek: Now, when the IBM PC's came in, it sounds like initially it was just yet another type of 
machine. It didn't seem from your description to be a real sort of cultural shift within the computing 
environment here at Columbia. Maybe the shift away from the DEC-20s to the UNIX systems was more 
that type of a shift. Did that effect Kermit development when the DEC-20s got shut down?  

Catchings: Well, that was much later though.  

da Cruz: Yes, that was 1988. We're still talking early eighties here.  

Catchings: I mean the IBM PC the introduction of that made the big change that it was now legitimate. 
As you say, Superbrain suddenly went from being a leading producer to how long did they even last after 
that? Once, the big people like IBM entered and then Digital was doing their own thing with CP/M, I mean 
CP/M-86 [FDC: Strictly speaking, the DEC Rainbow desktop computer covered all the bases: it could run 
CP/M-80, CP/M-86, MS-DOS, or no operating system at all, in which case it was a VT220 terminal]. It 
was all of these big players suddenly entered. I think in that way it changed because now I don't know 
how many students would have had but suddenly there isn't just two Superbrains, or ten Superbrains or 
whatever it is. It's now PCs. We've gone from microcomputers to PCs. [FDC: It was significant that not 
only were the new PCs made by big companies such as IBM, DEC, and HP, but also they had 16-bit 
processors, rather than the 8-bit processors that limited the earlier CP/M machines to 64KB of memory.] 

da Cruz: They have it in their dorm rooms.  

Catchings: Yes.  

da Cruz: It's like Jeff said, you didn't have to stand in line anymore. You could be in your dorm room. Not 
only could you have a terminal but you could ship files back and forth. Meanwhile, I don't remember the 
timing exactly if the IBM PC was the first MS-DOS PC? Because HP, DEC?  

Catchings: It was the first one that mattered because we had—I'm trying to think who else was first, but 
they were the big ones because it was Seattle DOS and then they sold it.  

da Cruz: Right. There was NEC [formerly Nippon Electric Company, Ltd.]. Victor was CP/M-86. We had 
to adapt MS-DOS Kermit to each different make and model of PC.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 14 of 57 
 

Catchings: Every one of them is different. That's the key thing, they're all different. [FDC: After a few 
years all PCs became “IBM compatible” and the noncompatible ones fell into disuse; eventually IBM itself 
stopped making PCs.  MS-DOS Kermit continued to support the odd ducks, more as a matter of pride 
than of demand.] 

da Cruz: Yes, they're incompatible. Since Columbia is this big chaotic place with no central—the center 
for computing activities supposedly was in charge of computing at Columbia. But Columbia is like a bunch 
of feudal kingdoms and nobody can tell anybody else what to do.  

Catchings: These are cheap enough that anybody can buy—or starting to be that people can buy them, 
PCs.  

da Cruz: Yes. Everybody wanted to have them in their departments. We would say, “You should get one 
of these kinds because then you'll be able to communicate with everybody else. But if you get something 
else you're on your own.” They'd get something else. Then they say, “Now, you make it communicate 
because that's your job.” Depending on how big a cheese they are, we would actually get orders to make 
it work. We did a lot of adaptations in house to different MS-DOS machines, different CP/M machines, 
and different CP/M-86 machines. The CP/M version sort of took on a life of its own. Somebody, I don't 
remember who, chopped it up into modules and said, “Here's the system independent part and here's the 
system dependent part with the I/O routines.” All you have to do to port it is to just fill in these little 
routines and they were called overlays.  

Catchings: Right, modular programming, what a development.  

da Cruz: The object files output by the assembler were text files, lines of hexadecimal characters. There 
was a hex file for the main program which never changed. Then there was a separate hex file for the I/O 
routines for each computer and all you had to do was tell the loader to put the main one together with the 
one that you wanted and then you had an executable program for your computer. That was the CP/M way 
of distributing software. Pretty soon we had a huge list of CP/M computers that had Kermit because 
building these system-specific I/O overlays was like a cottage industry.  

Bochannek: You mentioned the porting efforts of Kermit to different systems here at Columbia. You 
mentioned DEC did a bunch of versions. You mentioned the IBM deal. Maybe now is a good time to talk 
about licenses, the copyright issue and the funding of the project?  

[FDC: We got sidetracked and never returned to this question.  It’s a long story but I’ll try tell it briefly.  At 
first we wanted the software to be free to everybody.  But then we found ourselves spending all our time 
making tapes instead of managing the systems and developing software.  So we started the Kermit 
distribution business and hired 3 full timers and some part-time students.  But then as demand for tapes 
dwindled their work turned more towards tech support which brought in no revenue.  Not wanting to fire 
them, I had to find a way to generate income to pay their salaries.  At this point our two most popular 
Kermit programs were MS-DOS Kermit (for DOS) and C-Kermit (for Unix, VMS, and about six other 
operating systems).  A lot of companies were “monetizing” our software, making it an integral part of their 
products or services; i.e. making (or saving) money from our work without paying us back in any way.  
Furthermore, end users of the products or services of these companies would call us for tech support – in 
other words, we do the work and the companies get the money. So I wrote a license that I thought was 
eminently fair which said, in essence, that companies that wished to bundle MS-DOS Kermit or C-Kermit 
with a commercial product or service would have to supply each user with the published manual so that 
(a) we’d get some revenue and (b) we would not have such a severe tech support burden.  This was fairly 
successful, we shipped truckloads of books directly to big companies like AT&T and Lucent, and even 
more were drop-shipped directly from Digital Press.  But our biggest customers either disappeared or 
downsized in the late 1990s, and by that time we had released Kermit 95, which was purely commercial, 
so we dropped the book requirement and came out with uniform “mix and match” bulk licensing terms for 
Kermit 95, C-Kermit, and MS-DOS Kermit.  Meanwhile, C-Kermit and MS-DOS Kermit remained, as 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 15 of 57 
 

always, free for “own use” or use within a company.  This scheme worked quite well until the financial 
crash of 2008, and this plus the fact that we were forbidden from issuing a new release of Kermit 95, 
resulted in the ultimate cancelation of the Kermit Project.] 

da Cruz: That's later. Now, it was just—  

Catchings: It was a free for all. Things like Mac; one totally different thing coming out in '84: the Mac. At 
the same time this was happening, DECUS, the Digital Equipment Corporation User Society—I remember 
going and speaking at a couple of those telling people about this. That was part of that thing where it was 
starting to get outside of the university much more.  

da Cruz: Bill has a really good voice.  

Catchings: Yes, I do voiceovers now. That was one of the big things. There was this whole thing 
happening inside the university with this machine, that machine making it work but then it started 
happening much more outside.  

da Cruz: Through DECUS, everybody found out about it and we started getting people sending versions 
not only for VMS but for every PDP-11 operating system. There were PDP-8, PDP-12, and I don't know 
whatever DEC made somebody came up with a version.  [FDC: DECUS also distributed the many and 
varied Kermit programs for DEC operating systems on native media for each kind of computer.] DEC 
publicized Kermit heavily. Ultimately, DEC was also the publisher of the Kermit books. Every time you got 
DEC literature, you saw Kermit. How did we name it? I'll tell my version and then Bill can tell his.  

Catchings: We have to say ahead of time we have not compared notes and I don't believe our stories will 
be exactly the same. The truth lies somewhere in between, over top or around it.  

da Cruz: In those days, when there was some programming project, there was always a naming theme.  
The popular naming themes, obviously, were Star Wars, Star Trek and CS Lewis. All of the programs in 
the world already had those names. At first, we didn't call it anything. It was the thing that we were doing. 
When we finally started to have to give it a name; when we deployed it, it had to have a name.  

Catchings: You have to type in something to start the execution; what do you type in?  

da Cruz: Exactly. As I recall, it was Bill and Jeff Damens and Bill Schilit and I  standing in a room on the 
seventh floor. We were on the seventh floor—this is the sixth floor—standing around saying, “Well, I 
guess we've got to think of a name for it. What should we call it?” Everybody goes, “I don't know. How 
about Enterprise or—“  

Catchings: Sulu.  

da Cruz: Where I was standing was a calendar on the wall, a Muppets calendar. I said, “How about 
Kermit? It's short. You can say it and not be embarrassed and you can spell it and so forth.” We said, 
“Okay, all right, fine we'll call it Kermit.” It wasn't a big deal. It wasn't like “ta-da.”  

Catchings: Yes, if we thought it was going to be a big deal we probably would have named it something 
better.  

da Cruz: We probably would in retrospect.  

Catchings: Picking a copyrighted trademark name wouldn't have been probably our first choice.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 16 of 57 
 

da Cruz: Not just that, but also I think it contributed to the common perception that it was a toy, that it 
wasn't serious.  

Catchings: The only things I would add is that I'm pretty sure we must have been standing in my office 
because that calendar was on my wall. It was either Bill Schilit's or mine; we shared an office then.  

da Cruz: It was 715, right.  

Catchings: I think so, yes. That sounds about right. In my memory, of course, I was the one that 
suggested it but that's just a slight interpretation difference. I also recall coming up with an acronym for it 
pretty much instantly, though you recall that as after the fact.  

Altman: What was the acronym?  

Catchings: The acronym was the KL10 Error-Free Reciprocal Micro Interface Transfer which comes 
trippingly off the tongue. The real problem is that there're no good words that start with K. In retrospect, I 
wish I had used the word “kernel” because at least that would have made some sense but the KL10 was 
the processor in DEC 20 and nobody knew or cared and it didn't make a lot of sense.  

da Cruz: Right. Then later you came back when you were about to have a child?  

Catchings: Yes, which was about a year later.  

da Cruz: You were looking through the baby book.  

Catchings: It said that Kermit is derived from a Celtic word for “free.” I have no clue if that's true or not 
but that's what the baby book said.  

da Cruz: Right. We were adamant that this had to be free software and it seemed perfect. But really it 
was named after the Muppets.  

Bochannek: At what point did you get in contact with the Henson people?  

da Cruz: Well, Bill—again, it was his idea to write an article for Byte. I said, “Wow, do you think they'll 
print that?” He said, “Look at all of the crap they print,” so we did. It was a big deal. They were serious. 
There were page proofs and copyediting and sending the things back and forth. By this time, Bill was 
working at the bank. He had a Xerox something or other. Was it a Xerox workstation?  

Catchings: Yes, I think so. It might have been a Star—I don't remember.  

da Cruz: Something like that where you could do graphics and you could print them. He was doing the 
diagrams, I remember. Then it was kind of frustrating because they got the article how they wanted it, but 
then they wouldn't print it because it didn't fit with any—  

Catchings: They had a theme every issue. They had something pretty on the cover by Tinney or 
whoever drew all of those pictures.  

da Cruz: We had to wait for a year before they came up with a theme where they thought Kermit would fit. 
The theme for the issue was—  

Catchings: Which made no sense.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 17 of 57 
 

da Cruz: —University computing.  

Bochannek: It was called the “Computers in Education” issue in June '84.  

da Cruz: Right. They said, "Kermit, A File Transfer Protocol for Universities".  

Catchings: Whatever.  

da Cruz: They changed the title of the article. By doing that, they misrepresented—they made it seem 
like this thing for pointy-headed, egg-headed people or something.  

Catchings: As opposed to fun guys who liked to code and name things after frogs.  

da Cruz: Yes, right, exactly. It was good that we published it and more people found out about it that way, 
I guess. In the course of all the page proofs and stuff, their legal department said, “You should contact 
Henson to get permission to use the name.” Probably only because that we said that it was named after 
Kermit the Frog. If we didn't say that, we could have said that we named it after Kermit Roosevelt. Not 
that I would want to name anything after Kermit Roosevelt.  

Catchings: Kermit Shaefer. There are other Kermits.  

da Cruz: I wrote them and they wrote me back—this is not clear to me anymore. I don't remember if there 
was one letter or two letters or three letters. I think you have one letter. They wrote back a letter saying, 
“Yes, you can use the name in the article that you publish or you can use the name in things that you 
publish as long as you say Kermit is named after Kermit the Frog, star of this show.” They gave the exact 
wording. We always used that wording. Later on, when the software became very popular and there were 
newspaper articles about it, and then this is the part I don't remember. When I published the first Kermit 
book, did I contact Henson again or not? I can't find any record of it but the thing that I do remember is 
that when I got the book back from the publisher, I sent a copy to Jim Henson. I said, “Look at this, isn't 
this cool?” It's named after your frog and it says right here, “Named after.” I don't think Henson ever 
actually received the letter or the book. I think it went straight to the lawyer and the lawyer said, “Who said 
you can do that?” I said, “Well I have this letter.” That was the last I heard from them. [FDC: I recently 
discovered the pertinent letter and sent a copy to the Computer History Museum.] 

Bochannek: How did the book deal with Digital Press come about?  

da Cruz: Bernie Eiben, I think.  

Catchings: Could be. After my time.  

da Cruz: Yes, I asked you to write it with me, remember.  

Catchings: Probably, but I was busy raising kids and moving to North Carolina or something.  

da Cruz: Me, too. I got in a lot of trouble for that. I guess I had the idea. It was my idea to publish the 
book, but I didn't know how to do it. I was asking around and our main Kermit contact at DEC—because 
we had a lot of contacts at DEC because we were a huge customer.  

Catchings: Yes, because we didn't just buy two DEC 20s. We kept buying them.  

da Cruz: Yes. We ourselves bought four and there were two other ones at Columbia besides. That's six 
million dollars.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 18 of 57 
 

Catchings: In 1980s dollars.  

da Cruz: Yes. We'd go up to Boston and get the helicopter ride to Maynard or Marlborough. One time, 
they put us up in this crazy hotel. I don't think you were with us. I think it was me and Howard. It was like 
a medieval castle. Everybody was wearing Elizabethan costumes. I said, “This is weird.” They'd make us 
ride in limousines. It was creepy. Aside from that, being there was really cool. Visiting the Mill; what a cool 
place to work. [FDC: it was a mid-19th-century textile mill powered by a water wheel, with all its original 
wood flooring, interior brick walls, etc.] 

Bochannek: It was through a contact at DEC that you got to do the book?  

da Cruz: Well, Bernie Eiben came out of nowhere. He contacted me when CP/M Kermit came out and he 
said he wanted to adapt it to the VT-180. After that, Bernie and I worked together very closely for years 
and years and years. E-mail flying back and forth constantly. I only met him once in person at a DECUS. 
He spoke half German, half English.  

Bochannek: The graphics in the book are actually interesting, too. They're very whimsical. I was 
wondering if you could tell the story of that briefly; how the illustrations came to be?  

[FDC: The illustrations were by George Ulrich, a well-known illustrator (and sometimes also writer) of 
children's books.]  

da Cruz: They went crazy with the production of this book. It has features that you wish it didn't have, but 
they wanted it to be special. For example, they have words in green. I think whenever they write “Kermit,” 
they put it in green. I said, “That might be a little crossing the line, a little too froggish.” They started the 
chapter on the verso instead of the recto. All kinds of crazy things. They were always, “Oh, this is the 
latest in Swiss design.” They would fly us up just to have conferences about the book. Did you know that 
DEC had an airline? I was going to say an air force. [FDC: I forgot to mention that they also changed the 
title of the book from “The Kermit File Transfer Protocol” to “Kermit, A File Transfer Protocol” for “design 
reasons”.] 

Catchings: I believe at one time it was supposedly the largest private airline or whatever in the country.  

da Cruz: Yes, we flew on a Digital Airplane.  

Catchings: I flew out of Teterboro up to Logan one time.  

Bochannek: The book was part of the license agreement, though, right?  

da Cruz: Not that book. That book was still written in the days when everything is free, except the book. I 
think there was even wording in the book about, “This will be open and free forever.” I was very naïve in 
those days.  

Catchings: He was very young, very idealistic.  

da Cruz: It never occurred to me that Columbia could be so mean.  

Catchings: I think that might be in that little thing.  

Bochannek: How many people were working at—we're at about 1986 now, roughly?  

da Cruz: Yes.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 19 of 57 
 

Bochannek: How many people were actively working on Kermit in your department?  

da Cruz: I guess Bill was gone by then.  

Catchings: I left in May of '85. You still hired some of my relatives but I was gone.  

da Cruz: Right. Four or five. It wasn't the Kermit group. It was the DEC-20 systems group but we were 
mainly working on Kermit.  

Bochannek: Can you just give us the names of the people?  

da Cruz: Bill Schilit, Jeff Damens. I don't know if they were all at the same time. Daphne Tzoar.  

Catchings: Ken Rossman.  

da Cruz: Ken never worked on Kermit.  

Bochannek: When did Christine come in?  

da Cruz: Eighty-six. By this time, it was such a big deal that people were—we said it was free. But how 
do you get it? You have to write to Columbia. We sent you a mag tape. We said, “You send us a blank 
mag tape and we'll put Kermit on it.”  

Catchings: They'd send all different size mag tapes and my job devolved into making tapes. I like to code, 
not make tapes.  

da Cruz: Me, too. I remember a time when we had a party and the whole DEC-20 systems group and half 
the people from the other group were over in the machine room making tapes because we had such a big 
backlog. We had to clear out 200 tapes. We had all of the tape drives going for 24 hours.  

Catchings: As we said earlier, they were finicky.  

da Cruz: Somebody said, “This is ridiculous.”  

Bochannek: We're roughly in 1986. Kermit has become quite popular. There are many different 
implementations. The first edition of the book has been published. There's more and more staff busy 
copying tapes. [FDC: We mailed tapes to most of the countries in the world.  This is where I developed 
my “international postal addressing” skills, which are the topic of a fairly famous website, “Frank’s 
Compulsive Guide to Postal Addresses.”] 

da Cruz: We've reached the point now where we're going to have an actual Kermit project, instead of a 
bunch of people doing this, stealing time from their real job to do it. At first it was our real job. After a while 
we had other responsibilities.  

Catchings: Install new DEC-20s.  

da Cruz: Right. We had a user community of 6,000 people on the DEC-20s alone, always having to find 
some way to get more juice out of the computers. It's not relevant to Kermit especially, but we would 
make trips to Marlborough to talk to the engineers like Peter Hurley. We used to talk to him all of the time 
about things we could do to get more control over access because all of the resources were being 
swamped. They actually—there were a lot of things that went into TOPS-20 that came from us; either that 
we wrote the code for, or pushed the idea so hard that they accepted it. The management here was not 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 20 of 57 
 

crazy about seeing all of these system programmers packing tapes all day. We agreed that we would 
charge $100 to send a tape and we would use the money to fund a production staff. We hired Christine 
as the business manager and she hired, I forget, one or two production people. We had the whole 
operation in the back room on the seventh floor [FDC: which still had its power and raised floor from the 
days when it was an IBM Watson Lab machine room]. We had a VAX-750 and a VAX-730 and some 
micro VAX's and tape drives and all of the stuff we needed. We moved the operation off the DEC-20s and 
we brought it—it wasn't totally on the DEC-20. We also cut tapes on the IBM mainframes because we had 
a lot of customers who had IBM shops. We could make OS tapes or CMS [IBM’s VM/CMS operating 
system: Virtual Machine Conversational Monitor System] tapes on the mainframes. We still made DEC-20 
tapes. We could also make TOPS-10 tapes on the DEC-20. We could make ANSI [American National 
Standards Institute] tapes on the DEC-20 or on the VAX [FDC: we wrote a number of tape writing, 
reading, and conversion programs, allowing us, for example, to write IBM mainframe tapes on the VAX]. 
They [the Kermit production and business staff] took orders. They kept the database. They did the 
customer relations and all like that. [FDC: They also did first-level tech support, and passed along any 
cases they couldn’t solve to the developers.] It was really successful. Like I said in the e-mail, I thought 
that charging $100 per tape—  

Catchings: Would make them go away.  

da Cruz: Yes, right. Exactly. Then we could stop bothering with this so much. It was really nice that so 
many people wanted it but it was kind of a lot of work, also. [FDC: To state it more clearly, I never thought 
anybody would pay $100 for us to make them a tape.  I was very wrong.  By August 2003 we had fulfilled 
15307 tape orders, 92752 diskette orders, 5524 Kermit 95 shrinkwrap orders, and 28260 book orders. All 
this is mail order. After 2003 most of revenue came from Kermit 95 and C-Kermit bulk licenses.] 

Bochannek: There were four or five different tapes, too, depending on what exactly you wanted.  

da Cruz: We were using 1600 BPI 9-track tapes which hold, I forget how much, 50 megabytes, 
something like that. At first, it all fit on one tape. As we got more and more Kermit programs coming in 
and more documentation, we had to go to a second tape and then a third tape and then a fourth tape and 
then a fifth tape. By the time we finished with tapes, we had five tapes. To this day the Kermit distribution 
is—the file naming conventions and the groupings were by tape. First, there was a tape for everything. All 
of the file names had to be not only unique, but when a Kermit version had multiple files, they had to start 
with a unique prefix so they would be grouped together. Then, when we went to multiple tapes—and also 
file names had to be no longer than a certain length because some operating systems could not read long 
file names. Furthermore, some tape labels couldn't have long file names. We had to conform to all of 
those restrictions. All that started tapering off around 1990, I guess. Of course, when the books came out, 
we started selling the books as well as the tapes. We also sold disks, diskettes, different kinds of weird 
media tape like TK-50 tape cartridges, whatever that we could make that people wanted. In 1985, I 
started working on C-Kermit. I was telling Bill about how when he wrote CP/M-86 Kermit that he wanted to 
make a new paradigm for writing Kermit software so that it would be modular and it could be easily 
adapted to different platforms but he didn't remember. I did the same thing with C-Kermit. I wanted to 
make it modular so you could plug-and-play the different pieces and have it on different platforms. You 
could even put different applications on top of it and use the low-level I/O. I don't think anybody did that, 
but they could have. Or to use the command processor for some other application, things like that, which, 
again is another DEC-20 command processor. I wrote it from scratch so I wasn't stealing code from 
anybody. [FDC: Ironically, I managed a project in the mid-1980s where we implemented the DEC-20 
command parser for UNIX, mainly for use in the MM (mail manager) program, but I wound up not using it 
in Kermit because it was too complicated.]  I don't even see what the point is in stealing code because 
you never can really understand somebody else's code. It's just easier to write it yourself because then 
you understand it. In my experience, there're very few people who have a talent for working with 
somebody else's code. Some people are very good at it; like Jeff, for example. There was a guy who 
used to work for me named Chris Ryland. He was a really interesting guy. You remember him?  

Catchings: Yes, the Imagen printers.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 21 of 57 
 

da Cruz: He came from Harvard. He was the first person who came here that knew all about this world of 
the ARPANET and all of the cool stuff that was happening at all of these other universities. He's the one 
who introduced us to all of that. He could take any software that anybody wrote and kind of understand it 
completely in a very short time and then do whatever he wanted to with it. But I'm not very good at that.  

Bochannek: C-Kermit was primarily targeting which platforms originally?  

da Cruz: Unix and VMS.  

Bochannek: Unix and VMS. There was an earlier Unix Kermit as well, correct?  

da Cruz: Yes. The earlier Unix Kermit was—how Kermit works is there's one on the local computer and 
one on the remote computer. The one on the local computer has to be not just the file transfer program. It 
has to be a terminal emulator. It has to do all of the I/O. Whereas, the one on the far end only has to do 
file transfer and it doesn't have to do I/O at all because it just uses standard input and standard output. 
That's what the original Unix Kermit was. It was the far end and it basically just implemented the file 
transfer protocol. It was written by Bill, I think.  

Catchings: I know I wrote some sort of Kermit in C.  

da Cruz: Two guys from the computer science department and three other guys from here. It was just the 
minimal Unix command line program where you just say Kermit dash this dash that dash that, no 
interaction, nothing at all, just the bare minimum. C-Kermit was supposed to pick up where DEC-20 
Kermit left off. For many years, we said the DEC-20 Kermit was the definitive Kermit program. The test of 
any other Kermit program was, “Did it interoperate with the DEC-20 Kermit?” But then DEC-20s 
disappeared. Unix was the next thing and to some extent VMS.  

Bochannek: How did you guys feel about that change since the DEC-20s were so well loved?  

da Cruz: Well, we were bummed out. To this day, every time I am doing something I try to do it the DEC-
20 way that was so perfect and, “Oops, it's not the DEC-20 anymore.” You have to go through some 
annoying other way of doing it. Some people were very bitter about it, that DEC just cancelled the DEC-
20 and tried to get everybody to swallow VMS.  

Catchings: Which was totally different as far as?  

da Cruz: Yes.  

Catchings: They may have seen it as a similar, but it was totally different.  

da Cruz: Yes. We weren't like that. We just ignored it. We went straight to Unix.  

Bochannek: But on DEC hardware.  

da Cruz: On DEC hardware, because all we had to do was take out the DEC-20 and put in a VAX 8650 
or VAX 8700 and plug all of the same peripherals [and networks] into it [even DECnet]. 

Bochannek: Now, at this point, we tried to talk about that a little bit earlier and you said that maybe this is 
the better time frame to discuss the whole licensing aspect. You have to somehow fund the staff that is 
doing the tape copying and so forth. What was the agreement within the university? What other funding 
sources were there?  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 22 of 57 
 

da Cruz: There was no funding source except for income that we generate from outside.  

Bochannek: What about any sort of corporate funding?  

da Cruz: The only corporate funding we ever had was—it wasn't funding per se—it was a C-Kermit 
corporate-wide license to Hewlett-Packard from 1994 until the end. It was $10,000 a year. It wasn't really 
enough to pay for even a small fraction of one person.  

Bochannek: You mentioned earlier that maybe ideology didn't necessarily play a huge role but you also 
talked about how you just wanted to share the software because it was just what you guys did. You wrote 
the code. You shared it.  

da Cruz: We were paid. We were paid to write software. No skin off our nose. Even better if other people 
take it and use it and help to improve it.  

Catchings: I think in that era the thought that the university would make money off of—it's so different 
now where the universities are all patenting things and they've got half of this company. I think back in 
that era, I don't remember—how could a university generate—maybe I didn't think hard enough. At that 
time, it just seemed like an odd thing that a university would try to make money off code.  

da Cruz: Oddly enough, Columbia did have an office that was in charge of such things, patenting things.  

Catchings: I didn't know where they were.  

da Cruz: Neither did I. I heard about them and every once in a while somebody would mention it to me; 
they'd say, “They want to talk to you.” I'd just hope they would forget and they did. I never saw them until 
the end. I'm not allowed to talk about that, but it wasn't pleasant.  

Bochannek: With whom did the peaceful use clause originate? Was that you, Frank?  

da Cruz: Me.  

Catchings: That would be Frank.  

Bochannek: Okay.  

Catchings: No argument there.  

Bochannek: Can you talk a little bit about that?  

da Cruz: Nobody really complained to me about it. Then, I told you in the e-mail of the episode where a 
company turned it to their own advantage.  

Bochannek: This is the Pentagon contract where Kermit was actually specified and a subcontractor was 
trying to use Kermit in the bid. I believe that's the story.  

da Cruz: Right. No, Kermit wasn't specified in the bid. They just wanted something that did what Kermit 
did. Kermit was the obvious choice because it was free. Then, some company could come and—I don't 
know—package it or something. I'm not sure what would have happened. They would have had to come 
to us and we would have made some arrangement.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 23 of 57 
 

Bochannek: What about commercial data communication software packages that did include a Kermit 
file transfer option? There was a license agreement with you? Or did they just specify what it said in the 
book as the protocol?  

da Cruz: Even before there was a book, we had the protocol specified online. Anybody could read the 
protocol and they could implement it. I don't know if that was a mistake or not. In a way, it made it more 
popular but in another way it hurt us because the third party implementations were almost without 
exception awful. [FDC: To be more precise, there is a basic protocol specification, the minimum which 
MUST be implemented, and then there are a lot of performance enhancements that are optional.  Third 
parties would implement only the bare minimum.  Which, if implemented correctly, was exceptionally 
robust but also quite slow.  Many people saw only these minimal implementations and concluded that 
Kermit protocol was unbearably slow, even though the Kermit Project implementations are as fast as or 
faster than anything else and at the same time more robust and “featureful.”] 

Catchings: It was mostly a checkbox. They wanted to say supports Kermit.  

da Cruz: Exactly. Since so many people used those, especially the BBS people who bought these 
packages—whatever they are called?  

Altman: Procomm, Softronics.  

Catchings: Telix.  

da Cruz: Right. They would use the Kermit protocol in some places because it was the only one that 
worked but it was so slow or buggy that they just said, “This is horrible, why would anybody ever use 
this?”  

Bochannek: We talked about more and more people using it and more and more different platforms. I 
believe in one of the Kermit News, I was reading about a collaboration between some of the local 
universities and how it sounded like you worked fairly closely together with some of them. Let me ask you 
about the perception of the user community of themselves; was there a sense of, for lack of a better term, 
a “Kermit brotherhood?” Did everybody sort of feel like they belonged to this group?  

da Cruz: You mean end users or developers?  

Bochannek: Either way.  

Catchings: This could be where he gets a chance as somebody who was one of those Kermit groupies.  

Bochannek: Yes, let's ask Jeff.  

Altman: Yes, I think there are two perspectives. When I first was exposed to Kermit, I wasn't exposed to 
it as Columbia at all. Stony Brook had completely rebranded MS-DOS Kermit. If you wanted to get a 
version of Kermit that worked with the Stony Brook modem pool or on campus communications, there 
was a particular distribution that inevitably was years out of date, had very bad, poorly written scripts. 
From a direct end user perspective, you probably didn't—unless you were part of DECUS you probably 
weren't interacting with Columbia on most campuses that were using Kermit. You were interacting with 
the local campus technology group and help desk, which certainly hurt the Columbia effort in many 
regards because none of those users ever bought a book. [FDC: By this point Kermit book sales were a 
major source of the revenue that supported the Kermit Project]. None of those users ever bought software. 
The campuses weren't paying for licensing for the software that they were redistributing.  

da Cruz: Of course, we didn't ask them to.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 24 of 57 
 

Altman: Which was all fine. From that perspective, I think there was a significant disconnect between the 
user community and the people who are developing the software. I think there was a huge transition 
between the early eighties and the late eighties from the perspective that in the early eighties everybody 
was interested in getting Kermit on to new platforms. There was a lot of direct communication with 
Columbia. The lack of networks between campuses meant that if you wanted it you had to pick up a 
phone or send a letter?  

Catchings: Or send out an e-mail.  

Altman: You could have sent e-mail through BITNET or what have you eventually. But a lot of the 
international communications were done through postal services. There was a broader connectivity 
between the end users or at least the system administrators and Kermit central.  

da Cruz: Yes, you have to look at the book, The Matrix by John Quarterman, the crazy ways that people 
had of getting to some resource that they needed somewhere on this multiplicity of networks that had all 
kind of hokey little gateways like the one we had here at Columbia between BITNET and DECnet.  

Catchings: Well, whatever our local university DECnet we called it.  

da Cruz: CCNET. You could send mail from anywhere on BITNET to any of the DECnet network that we 
had with a bunch of different universities like CMU and Stevens Institue of Technology.  

Catchings: Somebody had an ARPANET on theirs [FDC: It was Carnegie-Melon]. You had to have these 
weird e-mail addresses with colons in them, I think.  

da Cruz: Right. Source routing in e-mail addresses. [FDC: This is a whole topic in itself, covered pretty 
well in Quarterman’s book.] 

Bochannek: It seems like even though Kermit is such a nice handy name for the tool, the protocol, the 
software—the community that I'm not sure other than a very small core of developers—people who did 
the work on other platforms or end users really thought of themselves as a community in this sense? 
From the Kermit digest and the Info Kermit mailing list, it seems like there's definitely some sense of that 
going on but maybe not in the large.  

da Cruz: It's more developers than end users.  

Catchings: Yes, and that would have been a community of 100 people on the order of as opposed to—I 
mean, there was thousands—I don't know if there were millions but there were thousands and thousands 
and thousands of people who were using it, but the developers was a much smaller—?  

da Cruz: Somewhere between 100 and 500. I think in the first edition of the C-Kermit book, I tried to list 
everybody who contributed to just the C-Kermit code and it was three pages.  

Altman: By '93, the OS/2 version had 50,000 downloads on what was the Internet at that point which was 
a ridiculous number for this program. It's a utility program that provides terminal emulator and a scripting 
language and a file transfer over networks. How many people could there be that actually would want 
terminal emulation in the age of AOL and CompuServe.  

da Cruz: Well, it's really hard to wrap a young mind around the fact that up until about 1995, everybody 
who used computers was completely comfortable with text. Secretaries. I'm not denigrating anybody, but 
every single person who worked at Columbia or was a student or faculty or supporting staff who used 
computers, they dealt with command line processors. So how hard can it be? Then, suddenly, like a 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 25 of 57 
 

switch being flipped, it's like you can't even mention them without hoots of derision. People refused to 
deal with them. Microsoft goes out of its way to hide command.com so nobody can find it.  

Altman: I think that's an important point; at Stony Brook, for example, from '86 on the entire mail system 
was on the VAX. If you wanted to interact on campus mail, you didn't use Kermit for file transfer. You 
used Kermit because Kermit was the terminal emulator that got you from your PC on your desktop to all 
of the campus computing services. 

Bochannek: This is a good opportunity to get back to a question I asked in the very, very beginning and I 
don't think we answered which is the definition of what is Kermit? We talked about the protocol. We talked 
about a file transfer program. Now, we mentioned the terminal emulation. We haven't talked about the 
scripting language yet. I think you, Jeff, in the e-mail mentioned the Swiss Army knife.  

Altman: Yes, well, from my perspective, it was not only a Swiss Army knife it was also a lab. By the time 
we were done with Kermit 95, obviously we had serial support. We had Named Pipe support. We had 
LAT support. We had raw NetBEUI [Network BIOS (Basic Input/Output System) Extended User Interface] 
implementation. All of the TCP-based protocols that you would use to connect, whether it be R [remote] 
shell, R [remote] login, Telnet, SSH [Secure Shell], FTP [File Transfer Protocol], a variety of raw SAFI 
[ph?] connections. We implemented our own—tried to get brought to the IETF [Internet Engineering Task 
Force] a Kermit daemon service. [FDC: Note that Internet application-level protocols such as Telnet, FTP, 
and HTTP were also defined in secure versions, using Kerberos IV, Kerberos V, SSL/TLS, and other 
security methods and these were supported by C-Kermit and Kermit 95.] 

Bochannek: The IKSD [Internet Kermit Service daemon].  

Altman: The IKSD provided a more secure and, in fact, a more efficient file transfer protocol than FTP. 
It's scriptable on both ends. [FDC: IKSD is recognized as an Internet protocol by the IETF, specified in 
RFCs 2839 and 2840.] 

da Cruz: And more flexible and it does a hundred things that FTP doesn't do. People won't even use FTP 
any more because it's “too complicated”. Now they only use HTTP [Hypertext Transfer Protocol] to 
transfer files, which doesn't do anything except send the raw bytes back and forth. [FDC: Ditto for SSH-
based protocols like SCP and SFTP—in all these cases there is no character-set or record-format 
conversion like Kermit does for text files, and very little, if anything, in the way of selection criteria, 
collision options, etc.] 

Altman: Well, a lot of that has to do with the fact that HTTP ports are the only ports that are open on it. 
Now, in fact, the Internet is in many regards—you can flag it down to one port number. Everything you 
want to do is tunneled over HTTP and then proxied on the back end.  

da Cruz: It's really ironic. We started out with this huge diversity of computers. We had to really think hard 
about how to make them communicate effectively with each other by taking all of their characteristics into 
account—  

Catchings: Characteristics slash quirks.  

da Cruz: Yes. Arriving at what we call common intermediate representations for data. Formulating actual 
standards so that you have this well-defined representation for data. Then you have everything that's 
different. If it knows how to translate between its own formats and the common one, then anything can 
communicate with anything else. Now we just don't do it anymore. It's like, “Okay, I'm on a Mac and 
you're on a PC, so I'm going to send you this thing but I have to put it in this kind of archive but you don't 
even know about that kind of archive.”  If you can unpack the archive, all of the files are in Mac format 
instead of PC format. Somehow you have to find some other utility that knows how to decode the Mac 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 26 of 57 
 

files and put them in PC format. It's crazy. Kermit does all of that in the act of transferring the file, 
automatically.  

Bochannek: The file attribute extension that wasn't in the original Kermit; is it correct that that came from 
Brian Nelson's PDP-11 implementation of Kermit with the different file format attributes?  

da Cruz: Well, I designed it. I think he implemented it first.  

Bochannek: That was one of the things I thought was interesting is in the original Kermit documentation, 
for example, in the Byte article there's the explicit point made that Kermit will not convert different file 
formats for you. Then the later versions you can negotiate file attributes and different formats based on 
what platform you're on.  

da Cruz: Right.  

[FDC: Actually, Kermit always did convert text-file formats between unlike platforms; e.g. between record-
oriented EBCDIC and stream-oriented ASCII. A common intermediate representation for text files was 
part of the protocol specification from Day One. What was meant by not converting different file formats 
applied to application-specific file formats like Word, Excel, DB2, etc.]  

Bochannek: That seemed to me as sort of a shift in how you thought of Kermit.  

da Cruz: Well, I think we always thought of it as being an extensible protocol.  

Catchings: Yes, of all of the things in terms of you, I, whoever did it, that we did right was to make it a 
negotiated protocol up front as opposed to most of the other things you talked about. FTP works the way 
FTP works. You decide binary whatever, that's it. Kermit was always a negotiated protocol which would 
work with the lowest common denominator. If the other guy knew how to do it you could make it work as 
well. To me, that's the big design choice we made that was right. [FDC: Just to clarify by an example, the 
file sender might say at the very beginning, “I would like to compress the data during transfer” and the 
receiver can say “Yes, please do”, or “No, please don’t” or “What??? I never heard of that”, thus ensuring 
that the receiver will understand and properly decode the encoding method used by the sender, and then 
in the general case, advanced options—e.g. for speed—will be used if both sides support them.] 

[FDC: Interesting sidelight: Later versions of FTP protocol have incorporated feature negotiation.]  

da Cruz: Yes.  

<coughing; question starts at 0:46:16>  

Bochannek: Speaking of the extension and extensibility of Kermit, not the protocol level but at the 
application level, it seems like the work Joe Doupnik did for MS-DOS Kermit really advanced.  

da Cruz: Yes, I want to spend some time on Joe Doupnik. He moved Kermit to a whole new level. We 
wrote MS-DOS Kermit here and we developed it up until version 2.27 as I recall. It was through a 
succession of people that I mentioned already. Then, I forget exactly what happened. Maybe it was Jeff 
Damens who was the main guy at that point and then he left.  

Catchings: Yes, he left some time around there.  

da Cruz: Probably we had let it lie for a while. All of a sudden, I get e-mail from this guy. He's a professor 
of astrophysics at Utah State University. He says he has these suggestions. He said, “I wrote this code 
and I made these changes.” That began a relationship. The missing ten years between Bill and Jeff, I 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 27 of 57 
 

worked on a daily basis with Joe to design new protocol. We did Sliding Windows, for example, which is 
really complicated, more complicated for Kermit than it would be for something like X25 because for all of 
its layering Kermit isn't really a network. It's a point-to-point protocol that has to take a lot of quirky things 
into account about the transparency and so forth. It took us a couple of years to get it right. I was working 
on C-Kermit and he was working on MS-DOS Kermit. We'd send versions back and forth and we'd beat 
them to death and find something or think of some way to make it go faster. That was just one thing. Yes, 
he contributed a lot to the protocol. More than anything, he made MS-DOS Kermit  into an amazing piece 
of software that fit into this little teeny computer. The thing that I always say to everybody, and I've 
already said to you lots of times, is he implemented an entire TCP/IP stack with Telnet protocol and put it 
into MS-DOS Kermit so it could be a Telnet client as well as a serial port program. He put in all of those 
other PC networking things, as well, that were important to him, Novell things mainly. It still fit on a floppy 
disk. Can you believe that? Nowadays, the average computer program is 30 megabytes.  

Catchings: I was going to say a floppy disk in those days was 440 kb or something.  

da Cruz: Well, a 3.5-inch rigid disk, so it was 1.1 megabyte. The whole thing fit on that [complete with 
documentation, code pages, key maps, scripts, and all sorts of other things]. It was enormously popular. It 
was really popular. Christine wrote the manual. We must have sold 100,000 of those manuals. [[FDC: 
Interesting sidelight: Later versions of FTP protocol have incorporated feature negotiation.]  

Bochannek: Could you say Christine's full name, real quick.  

da Cruz: Gianone. The book was also picked up by AT&T [American Telephone and Telegraph] and IBM. 
The book had the disk in the back.  

Bochannek: Translated quite widely, too.  

da Cruz: It was published in German and French, as well.  

Bochannek: I believe there's a Japanese version.  

da Cruz: And Japanese. That's not a translation. That's a rewriting—it was written from scratch but about 
the same program [FDC: by Dr. Hirofumi Fujii of the Japan National Laboratory of High Energy Physics in 
Tokyo, and his co-author Fukuko Yuasa. "MS-Kermit Nyumon". It was about MS-DOS Kermit on the NEC 
PC9801. A truly remarkable computer; Hiro showed it to me once. It's just MS-DOS, which, face it, is 
pretty primitive. But its keyboard driver! It allowed Japanese Kanji and well as Katakana to be entered 
from a Roman (QWERTY) keyboard, learning from the typist and building up a knowledge base over time. 
This was in 1987.]  

Bochannek: Now, is it the MS-DOS Kermit where Kermit really acquired terminal emulation as a central 
feature? Were there other Kermits where it had?  

da Cruz: No, from day one. CP/M Kermit was a VT-52 which is the easiest terminal on earth to emulate. 
[FDC: PC Kermit, later to be MS-DOS Kermit, started out with VT52 emulation but had VT100 and Heath 
terminal emulation added, before Joe took over.] 

Altman: What I would say about MS-DOS Kermit is that it was the first Kermit application that had the 
VT-220 implementation and the VT-320 implementation. It was so fully feature functional that you could 
replace a real DEC terminal for VMS applications with it. 

da Cruz: Which are very demanding. [FDC: DEC’s VMS operating system took full advantage of every 
feature of each DEC video terminal: VT52, VT100, VT220, VT320, etc.  Very few VT100, 220, or 320 
terminal emulators worked well enough to be used with VMS.I 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 28 of 57 
 

Altman: From my days of working on the emulator in Kermit 95 and OS/2 C-Kermit, the only way that you 
would be able to identify some of these applications is to figure out what the escape sequences really did 
in the real terminal. Whereas, to sit through and watch your program step by step, pipe a character 
through your program and transparently through the real terminal at the same time, watching exactly what 
was happening to the curser at each point, watching the state machine change.  

Bochannek: That was MS-DOS Kermit, I believe. Also, did Tek [Tektronix graphics terminal] emulation 
and even some others?  

da Cruz: It was the only Kermit program to have a graphics terminal emulator.  Besides Tektronix 
4010/4014 it did Data General Dasher emulation which is incredibly difficult; it was a color graphics 
terminal as well as a text terminal. Maybe I wrote one line of code in MS-DOS Kermit. I did a lot of the 
other stuff. For example, we put a distribution together so that there are code pages that you can load for 
Cyrillic and Hebrew and Arabic and so forth, Latin 1, Latin 2. Then, Kermit itself knew how to switch code 
pages. This was the first terminal emulator that people could use in most of the countries where they don't 
speak English or Dutch. Even in Holland, [although Dutch doesn’t use accents], they have the ij digraph. 
Even they would be a little picky.  

Bochannek: Now, the scripting language for Kermit we mentioned all of the different features that Kermit 
acquired over the years. Did that also originate primarily in DOS Kermit when it started to get control flow 
structures?  

da Cruz: No. I have to say that's me. It really started in DEC-20 Kermit but it was very limited in DEC-20 
Kermit. Kermit’s command structure is a prompt and a command and then you get another prompt and 
then another command. You can take the commands and put them in a file. Then you can tell Kermit to 
execute the file. At some point—I don't know if it was Bill or me but we added macros to DEC-20 Kermit. 
We had defined a macro as a series of commands to execute. That was the extent of it. The macros 
didn't have parameters or variables. It was just like a shortcut. The first actual scripting language was in 
C-Kermit and it was all me. My real interest has always been programming languages. I programmed in 
lots and lots of programming languages since the 1960s and I appreciated the design features of different 
ones which is kind of ironic when you look at how the Kermit scripting language turned out because it's a 
real mess from a design point of view.  

Bochannek: I was going to ask you about what inspirations you had for the syntax because it is a bit 
idiosyncratic at times.  

da Cruz: We started out with command files so the scripting language was Kermit commands. Then the 
first thing you want to do that is add variables so you can pass parameters to a procedure. How can you 
distinguish a variable name from text in a command? Kermit's script language is executed on the spot, 
left-to-right so to speak; it's not compiled; we can't build complex structures and then unwind them at the 
end as compilers do because it's real time; each “word” is parsed and verified as it’s encountered. It's a 
command language like the Unix shell. Like the Unix shell, it needed an escape character to introduce a 
variable. The first thing I said to myself was, “Well, gee, what if we want to have functions or different 
kinds of variables?” I said, “Okay, we need an escape character and then a subsequent character that 
says which kind of thing this is that we're introducing. Already it's getting ugly. The first variables we had 
were backslash percent one, backslash percent two which were like DOS variables with a backslash in 
front of them or like a Unix shell variables but with backslash percent instead of dollar sign.  [FDC: One 
conscious design decision was that, unlike the Unix shell, the Kermit scripting language would have only 
one escape character; you only need to look at some Unix shell scripts to see why this was a good idea.  
However, the choice of backslash was unfortunate because when C-Kermit was adapted to Windows (as 
Kermit 95), the escape character was the same as the Windows directory separator, which caused no 
end of heartache.] 

Bochannek: Then you even acquired S-expressions…?  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 29 of 57 
 

[FDC: We got sidetracked and I never answered this question. Yes, I added a mini-Lisp subsystem to C-
Kermit and Kermit 95 in 2000-2001. Somebody dared me to do it. It’s actually quite handy.] 

da Cruz: Then you want control structures, you want FOR loops and WHILE loops and SWITCH 
statements and GOTOs. GOTOs are not always bad. Figuring out how to implement them…  everything 
had to be done  in such a way that it didn't break everything else that had been done before because all 
throughout the years people were writing Kermit command files and then little by little they started calling 
them scripts because they had programming features. It just turns out that to add something to the 
language it's not always possible to do it in the nicest way, the most pleasing way because that would 
break other things. So we wind up with what you see today.  

Catchings: I think that's a general thing, not just as a scripting language but of all parts of Kermit is we 
always cared about the legacy. It wasn't just well as of January 1 all of that stuff is trash and doesn't work 
anymore. I don't know for a fact that the first version of Kermit would operate with last version of Kermit 
but that certainly would have been our goal. I think we've always wanted to make sure of that.  

da Cruz: I think it would.  

Catchings: I would hope so, but I won't promise anybody.  

da Cruz: The main problem is that the compilers changed out from underneath us. The code that we 
wrote in the seventies or eighties, you just can't compile it anymore. C is a language you love to hate 
because—the first time I saw C I said, “Wow, isn't that cool? It's so terse and concise.”  

Catchings: Self-documenting.  

da Cruz: Yes. Right, it looks like PDP-11 assembly language.  

Catchings: I wonder why.  

da Cruz: Yes, I wonder why. Then, I learned how to program in C in the late seventies or early eighties 
but you have to know what you're doing. Well, the powers that be started saying, “People don't know what 
they're doing and so you can't make them have to know what they're doing. We have to protect them from 
themselves.” C starts getting more and more and more bureaucratic until now it's almost impossible to 
deal with. You have to comply with this and comply with that. Oh, that's dangerous, you can't do that. I 
said, “But I know what I'm doing.” Jeff has a clause somewhere where he's allocating an array without 
initializing it and reading from it to get a random-number generator seed. The compilers scream bloody 
murder when he tries to compile the code.  "But I'm doing it on purpose! I want to do that!”  [FDC: The real 
problem with C is that it keeps changing and there are too many varieties of it.  In earlier times, 
programming languages were rigidly defined and stable.  I’ll name PL/I and SNOBOL as two good 
examples.  You could write programs in those languages and they would work on different kinds of 
computers and different operating system releases and across vast spans of time.] 

Bochannek: I actually want to get back to the user community real quick and just talk a little bit about 
how you ended up having Kermit users really all over the world. Going through the archives, I was 
fascinated by finding postcards from individuals sending you a message from Norway that they had just 
found a copy of Kermit and were excited about it, to letters from universities in China to really all over the 
world.  

da Cruz: In the days of Chairman Mao. 

Bochannek: Absolutely and you could preserve those things and add them to our archive. How did that 
come to be? It seems obvious how in the university environment or in certain hardware environments like 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 30 of 57 
 

the DEC-20 community how it would have become popular. But how did that spread so widely throughout 
the world?  

da Cruz: One way is whenever we sent a tape to anybody, we kept a record of it. Then, when we started 
publishing newsletters in 1986 we sent them to everybody on the list. Maybe that had some affect.  

Catchings: I wouldn't be surprised if Byte magazine for all of it may have had other consequences Byte 
was very widespread.  

da Cruz: That's true. Did they have other language editions?  

Catchings: I don't know. I would think so. In the 1980s, I know PC Magazine and PC Week, because I 
had my articles translated into—  

da Cruz: I saw that.  

Catchings: —all different kinds of languages that I had no—  

da Cruz: Swedish.  

Catchings: I would assume "Byte," in that hobbyist era especially, was everywhere. We would get—I 
remember, even when I was there up to '85, we'd get letters from places which we weren't allowed to get 
letters from.  

da Cruz: Yes.  

Catchings: We would get stuff from Cuba, or places that you weren't allowed to have contact from. They 
heard that somewhere.  

da Cruz: Remember the time that the National Security Agency sent us a tape, so that we could put 
Kermit on it and send it back? It was wrapped in, like 20 feet of lead foil. Anyway.  

Catchings: Did you send that one?  

da Cruz: I think I threw it away.  

Catchings: I was going to say—yes, we did have some differing opinions about who was allowed to get it 
and who was not.  

da Cruz: I used to throw away any orders that we got from South Africa, for example.  

Bochannek: Now, you mentioned the newsletter. One of the other things that I saw in the archive, was 
that it seems like producing, printing and mailing the newsletter was quite expensive.  

da Cruz: At first, it wasn't so bad. It's just being in my brain here, but the first newsletter was probably 
eight or ten thousand copies, and the last newsletter was maybe 100 or 200 thousand. Plus, it was a lot 
more pages, and it was stapled, it had a slick cover and everything. The first one was more like a flyer; 
that last newsletter was the first one that lost money. All the other ones generated more income. You 
could tell, because they would tear off the order form from the newsletter and send it back with an order. 
Then we kept a record of that.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 31 of 57 
 

Bochannek: Now in the Kermit News, Volume 1, Number 1, original that you added to the archives, there 
is still a frog with a crown.  

da Cruz: Right, and the one online doesn't have a frog. I just did that, because at the time, I didn't want 
Columbia to be sued, but now I don't care. I don't have access to the archive anymore, so I can't replace 
it.  

Bochannek: Could Kermit have benefited from another icon, rather than the frog?  

da Cruz: Kermit didn't really have an icon, except for Macintosh Kermit.  

Catchings: Yes, that looks like a face on the Mac.  

da Cruz: That is the Macintosh Kermit.  

Catchings: I <inaudible> that icon. I'm just kidding, sorry.  

Altman: There was the Windows 3.1 port that wasn't done at Columbia, had— 

da Cruz: Oh, that one, right.  

Altman: —an actual Kermit the Frog, that was being distributed on CompuServe, and I'm sure that was 
part—some of the angst that was going on, as Henson family was trying to sell Kermit branded 
educational software. [FDC: That was one of few Kermit programs we never distributed.] 

Bochannek: Yes, but there really wasn't—even in, sort of general conversation on the mailings or 
anything—there really wasn't a symbol like a logo, type, a font or anything like that.  

Altman: No, and even for OS/2-C Kermit and Kermit 95, we used the Columbia Logo.  

da Cruz: The first version of Kermit 95, had a hokey little square icon that said, K-95. The second one 
has the Columbia crown, which we go to pains to point out; it's not because we're royalists, but because 
it's the crown of King Edward II, who founded Columbia University.  

Bochannek: What's the origin of the coffee mug that you sent?  

da Cruz: My college roommate's wife, Judith Bryant—we were all friends in college, and then they moved 
to Vermont and she became a potter. I asked her to make some cups, a Kermit cup.  

Bochannek: Okay. Were they made in large quantities, or—? 

da Cruz: No. She only made ten.  

Bochannek: Okay. Now we have—  

da Cruz: We gave them to a few people.  

Catchings: I was going to say; I didn't get one, let's put it that way.  

Bochannek: There's one in the Computer History Museum now; very excited about that.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 32 of 57 
 

Catchings: That must be mine.  

da Cruz: Yes, right.  

Bochannek: How would you describe, if you could even describe such a person, the typical Kermit user? 
Is there such a thing?  

Altman: I think it changed over the decades. I mean, early on at Columbia, you would use Kermit to be 
able to transfer your file.  

da Cruz: You had to do it, and so you had to learn how to do it, right?  

Catchings: They were just students; they had no special—other than, maybe taking a computer class. I 
don't think it would have been all classes initially, it would have been computer classes.  

da Cruz: But then, even by 1982 or so, when we had MS-DOS Kermit for the first time, I spent a lot of 
time with, for example, Herb Goldstein, who was a famous physicist, who was writing that book. He had to 
use Kermit to collaborate on the book that I was telling you about. He was totally computer shy. He's 
written the definitive book on earth on branch of mathematics [Newtonian physics]. He was at a 
department that had some of the first computers in the university, but he wouldn't have anything to do 
with them. Yet he dealt with Kermit. Everybody did.  

[FDC: Herbert Goldstein, 1922–2005. The book I was trying to think of is "Classical Mechanics.”]  

Altman: Later on, you would have users, as we discussed, who were predominantly using it for terminal 
emulation. They had a PC or a Mac somewhere. Their goal was to connect to the mail system or the HR 
[human resources] system or whatever it was, that was running on the mainframe or a minicomputer or 
Unix system, in order to do their job. They weren't thinking of Kermit as anything. In fact, in many cases, 
they didn't even know they were running it. They had a script on their PC that said HR App, and that 
kicked off Kermit running a script that logged them in, connected them, brought up the right terminal, and 
put them into console mode, and from that point forward, they were working.  

da Cruz: Right, they typed HR, and they see the screen of the application on there, and that's all they 
know.  

Altman: In '91 or '92 at Stony Brook, we had macros that were built into WordPerfect on DOS, that you'd 
press I forget what combination of keys, and it would kick off a script to take the file, or save the file that 
you were working on, take the name, [and] call Kermit. Basically, you'd log into your mail system, upload 
the file, attach it to a mail message that you could then send. It went from being something the end users 
consciously knew about, to something that was embedded. It was really like an embedded technology. 
Certainly, by the time Kermit 95 came around, I would say there were two classes of users. There were 
System Administrators, who were using it as a terminal and they wanted to know all about the detail of 
some scripting languages and SSH, Kerberos, or SRP [Secure Remote Password] logins, and exactly 
what the inner details were, because they wanted things to be done in a particular way. We went to great 
extremes to add every possible knob that you could think of, to allow customization of the behaviors. 
They were predominantly using it, for the most part, for terminal emulation. You then had applications, 
Costco's Pharmacy, where there—it's a desktop cash register terminal that they're working off of, and it's 
just built into the system. You place an order, and the order would be logged to a file, transferred using 
Kermit, to over a dialup line, and the back end computers would do all the processing and send back a 
file that contained the results.  

da Cruz: The operator had no idea that there—that Kermit even existed. The same thing with Best Buy. 
This might be after your time, but Best Buy—  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 33 of 57 
 

Altman: Burger King was using it to deliver all their nightly results.  

da Cruz: Yes, exactly, and franchise things like Burger King; it was a very common Kermit application. 
They had a VAX or something, and then all the cash registers would say, well we sold this many of these 
things, and send the report, then the VAX would order whatever supplies were running low. Best Buy 
wanted to buy a huge Kermit 95 license, but they didn't at first; they found some flaw whereby if the 
operator did a certain thing, they could get at the command prompts. By this time, Jeff didn't work here 
anymore, and I said, “You could pay Jeff to fix it.” They couldn't. Somehow, they would buy a million [FDC: 
“million” is hyperbole, but yes, tens of thousands of] licenses, but they couldn't spend $1,000 to fix the 
thing that was bothering them. I was going to lose the sale. I said, “All right, here's what you can do. For 
the command screen, you set the text color to be the same as the background color, so if they come to 
the command prompt, they won't see anything.” That was good enough for them.  

Bochannek: How did these applications come about, like the experiment support on the ISS 
[International Space Station], or like, the one with the Brazilian elections that was featured on Kermit 
News?  

da Cruz: Some of them came out of the blue. I knew nothing about the space station until it happened, 
and it was in the newspaper.  

Bochannek: This was just a user somehow at—  

da Cruz: NASA [National Aeronautics and Space Administration].  

Bochannek: At NASA, who knew how to use it, and they just made it work?  

da Cruz: Yes.  

Bochannek: What about the Kermit implementation on the HP 48 SX Calculator?  

[FDC: We never came back to this question, but yes, we worked with Hewlett-Packard on the design of 
the HP-48 calculator, which uses Kermit protocol to communicate with the outside world.  When the 
product shipped, they recommended MS-DOS Kermit and Macintosh Kermit for the other end of the 
connection; there was a flyer in the box, and also in the user manual.  Incidentally HP also published a 
user manual for Kermit on HP-UX, their Unix operating system, which came with C-Kermit pre-installed.] 

da Cruz: Let's go back to the Brazilian election; that was more interesting, because we worked with them 
on that through the whole process, and it actually needed a customized version of MS-DOS Kermit that 
had a Portuguese user interface. It was just the minimal amount that they needed done, and we did it. It 
worked, it was just—it might have been the most significant thing we'd ever done. This was the biggest 
election that had ever been held in the history of the earth up to that time, 1994.  Previous elections in 
Brazil had been disasters, both from the standpoint of corruption, and from the standpoint of how long it 
takes to get the results reported, or even boxes being lost on the way, or sinking in boats. Now, for the 
first time, they had electronic transmission of results on the same day, and it just turned out perfectly. I 
was pretty proud of it, and Joe was pretty proud of it, and that's—  

<inaudible background conversation>  

Bochannek: Yes, the question is, were you approached by the Brazilian government, or—?  

da Cruz: No, the Brazilian government hired a consulting firm, Padrão iX Sistemas Abertos, Brasília, to 
design how to do it, and the guy who owned the consulting firm, Fernando Cabral, was a Kermit friend. 
He—that was how he would plan to do it from the beginning.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 34 of 57 
 

Bochannek: The reason I'm asking about this, the space station, the Brazilian election, or even the HP 
calculator, is because these are not the typical applications, necessarily. It's not the, loading a file from a 
mainframe onto your CP/M machine, or—  

da Cruz: Once you can transfer files—  

Bochannek: It's anything—right.  

da Cruz: You can think of all kinds of things. My favorite example is a cardiac pacemaker. Modern 
pacemakers have computers in them and collect data, and furthermore, they can be adjusted by remote 
control. It's a little scary, right, but in this scenario, you have your pacemaker, you go to visit the doctor, 
the doctor has a special laptop from the pacemaker company, he [or she] points it at your chest, 
downloads the history from the pacemaker with Kermit, he analyzes it, or he has some other software that 
analyzes it, and then says, “We need to change some adjustment,” and  types in commands, and it 
adjusts your pacemaker.  Kermit 95 is on the laptop, and there's an embedded implementation of Kermit 
in the pacemaker, which, actually, I wrote myself.  

Bochannek: How has the termination of the project affected those types of deeply embedded 
applications?  

da Cruz: It doesn't affect them because people who bought embedded versions of Kermit; it's a one shot 
deal. It's a perpetual license, and an unlimited license that we negotiate. However we negotiate it, you 
could say, “Okay, if you pay this much, you can distribute 100,000 copies.” They said, “I want an unlimited 
license.” Then we talk back and forth and arrive at a figure. Once that's agreed, that's the end of it. They 
never ask for tech support. Maybe, they don't need it. It's a pretty solid program. It's very simple, it's very 
small and compact, and they just have to adapt it to their particular microprocessor. [FDC: Embedded 
Kermit was purely commercial, written only to make money (and, hopefully, do a little bit of good in the 
world); there was no fixed fee schedule, every case was unique and negotiated according to the situation.  
Now of course, it’s free and Open Source like all Kermit software.] 

Bochannek: The typical data communication line in 1981, compared to today, has changed quite a bit. 
Things like when error correcting modems came in, I'm sure that had an effect on the Kermit protocol, 
using Kermit over packet switched networks has probably affected some of the protocol specifications as 
well. Can you talk about that a little bit; about the evolution?  

da Cruz: I'll let Jeff talk about it, because Jeff is responsible for adapting Kermit to basically reliable error-
free connections.  

Altman: I think there were changes even before that. As speed improved, as reliability of the underlying 
connections improved—  

da Cruz: All right, I'm sorry, wait, wait, let me back up. There's an earlier part.  

Altman: Here's an earlier part.  

da Cruz: The earlier part was that, not only were communication lines noisy and poor quality, but the 
devices that were communicating had serious limitations. The short packet of the original Kermit protocol, 
is because—  

Catchings: People can only type so fast.  

Altman: That's part of it.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 35 of 57 
 

da Cruz: The DEC-20, where the first Kermit program was written, had a little PDP-11 minicomputer as 
its communication front end, and the little PDP-11, as Bill says, was designed to accept input at about the 
rate that people can type. The funny story about this is that when the VT-100 terminal came out, DEC 
was all excited, and they came to show it to us. The guy hooked it up to a port on a DEC-20 and so we 
were using it, and he said, "And now, watch this." He puts it in smooth scrolling mode, and the DEC-20 
crashes.  

Catchings: X-on, X-on, X-on. [FDC: To explain…The DEC-20 is sending text to the VT100 faster than its 
scrolling rate, so the VT100 is sending back a constant stream of XOFF and XON flow-control characters, 
faster than a person could type, so many that the PDP-11 crashes, taking the DEC-20 down with it.] 

da Cruz: That's a story in itself, but then later on, the same thing happened. We had a famous 
programmer who once worked here. I won't mention his name, but he was kind of a fanatical programmer. 
He'd stay up all night, programming, and eating cookies and smoking cigarettes and drinking huge 
coffees. One night, he dozed off. His head landed on the keyboard. The keyboard started auto-repeating, 
and the DEC-20 crashed. When it came back up, it crashed again. It came back up, it crashed again, and 
finally, they found him with his head on the keyboard, and the keyboard was auto-repeating. [For reasons 
like these] Kermit protocol could not exceed the capacity of the DEC-20 front end. That's why we made 
these short little packets that we were excoriated for over the next 20 years. [FDC: The original maximum 
length was 94, which was just under the largest burst of serial-line input the DEC-20 could tolerate.]  As 
Jeff said, even before the work that he did, we made it possible to get very efficient file transfers on better 
connections, by having longer packets and also with sliding windows [which resulted in huge 
improvements when transferring files over connections with big delays; for example, through a satellite 
link]. Then, we noticed that, even with all that, that in Windows Kermit, the transfer rates could be really 
awful on an internet connection.   

Altman: Oh, I don't remember. Go on, go on.  

da Cruz: I think it was the Nagle algorithm? 

Altman: Oh, right. Yes, so we end up at a completely different layer of problems. One is, as you're talking 
over TCP or a TCP based protocol, it's like Rlogin, or in Telnet, we have much more transparency in the 
protocol, which you want to be able to take advantage of because the fewer characters you need to 
encode, the more actual data you can get into the packets that we're sending. When we're sending Kermit 
over Internet Protocol, we are also able to make much broader, better use of sliding windows. We can get 
a great deal of data onto the wire at once. It turns out that the Microsoft implementation of TCP/IP, in fact 
all the implementations of TCP/IP at that point in time, were struggling with congestion control in the 
internet networks. The Nagle Algorithm was developed to permit you—or to improve the congestion 
control by not sending non-full packets.  

da Cruz: TCP packets.  

Altman: TCP packets. Essentially, what you would do, is until you sent a full packet, you would not allow 
a single byte to be sent until the acknowledgment came back from the other side. You would keep 
gathering the data that's being sent by the application in the TCP stack until the acknowledgment is 
received from the peer, then you would allow, if it was a full packet, you would send it immediately, 
otherwise, you would then send it when the acknowledgment is received. This, when you're dealing with 
something that's going over a terminal interface, we end up with very strange interactions between timing 
of the Kermit packet through the TTY interface on the peer, and network stack.   

da Cruz: Basically, the Kermit acknowledgement packet would be a runt in the terminology of TCP. The 
data packet is huge, and the acknowledgment is just a little teeny packet, and you send it, and it doesn't 
go anywhere.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 36 of 57 
 

Catchings: It's waiting for its friends to come—  

Altman: It's waiting for additional packets to arrive, for until either a time or the packet fillers, or the other 
peer sends the acknowledgment to the previous response. You could disable that, which we did. It took a 
long time for us to diagnose that that was in fact the interaction problem that we were seeing. It wasn't 
strictly Kermit that would have this problem, but any protocol that they—acknowledgment on top of TCP 
based, and not just relying strictly upon TCP to do congestion control and encapsulation of the data.  

da Cruz: Yes, but what about streaming?  

Altman: Then we decided at some point, to remove the need for acknowledgment of the packets, 
because of course—  

da Cruz: If it's—  

Altman: We knew we were on a reliable connection; if we were running on TCP on both ends, then we 
could trust the TCP to handle that for us. We just simply did encapsulation of the Kermit packets with the 
error checking, the peer would receive them, but we didn't wait for the acknowledgments to come back 
before sending off the next one in the sequence, essentially allowing for a sliding window of infinite size. 
The peers would be able to say, “Oh, something went wrong, you need to backtrack,” up to some number 
of packets that the client would hold onto.  

Bochannek: This could also address situations where you may be on TCP on both ends, but maybe go 
through another non-TCP connection section.  

<overlapping conversation>  

da Cruz: No, that's the danger. You can't do streaming over a connection like that.  

Bochannek: No, I thought he just said; it would actually fall back in that case.  

Altman: We actually had these interesting algorithms that we had to come up with, because—what's the 
name of the gentleman that had the connection that was going TCP to X-25, to X-25, to TCP?  

da Cruz: Was he in Brazil?  

Altman: No, he was in Eastern Europe; to Russia?  

da Cruz: Oh, they're the convention guys. Wait, no that was before your time. I can't remember.  

Catchings: We'll call him Mr. X.  

Altman: We can go through the support e-mail archives. Even in the days of Kermit 95, we—Kermit was 
being used over these very complex networks, where simply the fact that the initial hop was TCP based, 
did not mean that the destination—because the intermediary—we would often have a Kermit connection 
from a PC to a Unix box, and then there would be another C-Kermit running on that box to connect to the 
next hop that might be going over—it could be going over anything. It could be going over a serial 
connection, it could be going over another TCP connection, it could be going over some alternate protocol, 
and if any of those connections is requiring the use of control characters for flow control, then the Kermit 
connection would fail.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 37 of 57 
 

da Cruz: Under normal circumstances, the two Kermit partners could say, “I'm on TCP/IP.” “Oh, me, too. 
Oh, well let's, you know, we'll just skip all the formalities and blast the data through.” That usually works, 
except when you have one of these weird things in the middle.  

Catchings: There's no way for them to know.  

da Cruz: No way for the end points to know, right.  

Altman: Right, the C-Kermit and the Kermit 95 applications basically allow you to turn this functionality off, 
so if you know that you disable streaming over TCP, if you know that you're going to be constructing 
these multi-hop connections.  

da Cruz: This brings up the other thing that every software developer knows, —”Why doesn't your 
software do this? Oh, okay, we'll add that feature.” Then, “Why does your software have so many 
commands? Why don't you have, like, a stripped down simple version?” It repeats infinitely, and we do, 
too. We have C-Kermit which has everything, and then Kermit 95, and then we have G-Kermit, which is a 
teensy-weensy little program that only transfers files and doesn't have any commands. Then they say, but 
why don't you add this to G-Kermit? Well, it's not my job anymore.  

Altman: Right,  in some regards, the powers that be drove—in terms of Kermit 95, Kermit 95 was a 
transition, because it was really about trying to make the application easy to use for those used to GUI—
the Graphical User Interfaces—and point to click. All the work that was put into the dialer application, 
which is really a separate app from Kermit, is about allowing a user to dive in as deep as they need to go 
into the Kermit functionality to configure a connection, a terminal, a set of operations that they want to be 
performed upon connection, and then having the dialer based upon that database generate a Kermit 
script on the fly, to actually drive the underlying—  

da Cruz: In other words, it gives the commands that they should have given.  

Altman: Without requiring that they know anything about the parsing—the scripting language, and then, 
but still, we always allowed the ability for users to go in and learn the dirty details of a scripting language 
to embed text commands into their dialer database entry configurations—  

da Cruz: It's a constant push-pull, “Give us a GUI. But let us put commands in the GUI.” No, the GUI is 
too complicated.  

Catchings: Could you please make it simpler in a more complex way?  

Bochannek: Let me actually ask about some of this adding more features sort of things, and what I'm 
specifically curious about, and something that you mentioned earlier, Jeff, were a lot of the security 
features. How did they come to be? I think it's quite interesting how comprehensive the support was for, 
for example, secure FTP, those kinds of features.  

Altman: That was all my hobby.  

da Cruz: It came about as orders from above. We were told to “Kerberize” Kermit, remember?  

Altman: Well, were we—  

da Cruz: We were told to Kerberize it, or else Columbia would not use it.  

Altman: Right, we had these interesting problems. Columbia hired me to produce an application, and 
throughout the entire time I was at Columbia, the biggest battle that we fought was getting Columbia to 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 38 of 57 
 

actually use it at Columbia. I only know about what you would describe as the turning point from where 
early on, every student used it. By the time I came on board, Columbia didn't want to have anything to do 
with it, but everybody else outside of Columbia loved us. We had this underlying problem, which was [that] 
the communication was no longer over serial, and it was over internet protocol, and the internet protocols 
required a different level of protection than what you have if you have a dedicated dialup line.  

[FDC: Clarification... Before Windows 95 came out, everybody at Columbia used MS-DOS Kermit or, if 
they had a Macintosh, Mac Kermit. Students, faculty, secretaries, administrative staff, deans, provosts, 
and the President. The Computer Center distributed these as the official supported communications 
software for the University for about 12 or 14 years.  We had Columbia handouts, we taught classes, we 
published newsletter articles, we did tech support, everybody was happy.  This continued with Kermit 95 
for the first couple years, but then for no apparent reason somebody, I never knew who or why, decided 
to switch to some other package that was simply inadequate, and which soon proved itself to be.  Then 
they switched to another.  Finally when they decided to mandate secure connections, they turned back to 
us because the packages they had switched to did not support them.  And Kermit 95 was the official 
desktop communications once again, for a year or two, until Columbia suddenly abandoned Kerberos for 
user security and switched to SSH, over our strong objections because Kerberos was far more secure 
and, more important, more manageable.  Once Columbia switched to SSH, it abandoned Kermit 95 for 
good.  All this was as mystifying to Jeff as it was to me.] 

da Cruz: First of all, we had clear text, Telnet and so forth.  

Altman: Sure.  

da Cruz: Then Columbia itself, the computer center management decided that that all the connections 
had to be secure, in 1997, I think. [FDC: Columbia had just implemented MIT’s Kerberos as its primary 
authentication and security method on the Unix timesharing hosts, and was about to require its use by all 
applications that wanted access, including to shell sessions via terminal emulators.] 

Altman: That's probably about the right time, end of '96, '97. I started becoming involved. The first 
problem was, we needed a Kerberos implementation on Windows, and MIT had one, but it wasn't very 
good, and did not really work very well, for what we were trying to build. I became involved with MIT in 
building their Windows port of Kerberos, but we were looking at Kermit, not just from the perspective of 
Columbia, but what other sites required. It wasn't just Telnet, it was Rlogin, you'd want to Kerberize Rlogin, 
you'd want to have, for FTP, when we finally implemented FTP, a GSS [Generic Security Services] based 
authentication for FTP. There were other authentication protocols. Telnet by itself didn't provide very 
strong or actually, by itself, didn't provide any privacy protection. The Kerberos authentication and the 
Telnet encryption option were both in themselves very, very weak. We were looking for alternatives. 
Doing Telnet over TLS [Transport Layer Security] was something that originated in the 3270 working 
group within the IETF, but basically died a very slow painful death there. The Kermit project is the entity 
that actually brought it to the implementation. It was for the Kermit project and the fact that we were doing 
Kerberos authentication over TLS that really brought out the need to have channel bindings between 
security layers on internet protocol. The first channel binding work in the IETF was actually the binding of 
Kerberos and open S/SL [Syntax/Semantic Language] implementation of TLS, while using the TLS 
handshake messages as the binding for GSS or for Kerberos authenticators. Today, you can't pass any 
protocols through the IETF as security layer that doesn't have channel bindings. That was driven by both 
a user need and by what I perceived was just a requirement. It just wasn't safe to use the software over 
unprotected connections. We wanted to make it as flexible as possible, so our implementation wasn't just 
Kerberos, even though that was what we used at Columbia. Stanford Secure Remote Password [SRP] 
was better for password based authentication as opposed to using a zero knowledge algorithm would be 
much better than using a central—if you didn't have centralized Kerberos, you could deploy that on your 
systems, and so we implemented that. We implemented X.509 certificate client support, we implemented 
server support, we have a complete GSS stack. The Kerberos libraries from MIT were ported and 
modified and became part of the base distribution, although Kermit was implemented to be layered, so 
you could actually deploy the Kermit 95, strip out the binaries that we shipped and got approved. We had 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 39 of 57 
 

all the export control issues as well, so we had specific binaries that were approved by BIS [Bureau of 
Industry and Security] for export, and so we weren't able to ship arbitrary things from MIT, but you could 
actually rip our code up and still use binaries that you built yourself.  

Bochannek: Do you know specific sites where those features were really critical?  

Altman: University of Illinois, the Urbana-Champaign campus. All their student registration system for 
example, was our student—you either went and you stood in queue to register for classes or you 
downloaded a Kermit 95 application, with a strip that logged you in securely using Kerberos over VTLS 
[Virginia Tech Library Systems] to an online registration system to-- pre, the web. The web wasn't secure 
enough for registration.  

Bochannek: We touched on another area several times already, and that's the whole internationalization 
aspect and the character sets, and the terminal support with different character sets and so forth. I was 
just wondering if you could—either Frank or Jeff—talk a little bit about the connection between different 
character set support, Kermit support, all those character sets in files, in the terminal emulators and so 
forth, and how those things related to each other.  

da Cruz: We started having contact by e-mail with people all over the world, as early as 1982, '83, with 
Bitnet. The way we were able to do that was on our DEC-20s, we made a mail gateway that pretended to 
be a card reader and punch, and then we connected to the IBM mainframe [FDC: BITNET (“Because It’s 
There” Network) was an academic network of IBM mainframes based on Remote Job Entry protocols 
started, I believe, by Ira Fuchs of CCNY]. Anyway, you couldn't send more than 80 characters. People 
needed to be able to transfer files in their own language, and they needed to be able to do terminal 
emulation, see the characters used by their own language. We became sensitive to the issues pretty 
quickly. Doing it in the terminal emulator was actually—it wasn't easy, but it was straightforward, because 
“all” you had to do was implement ISO [International Organization for Standardization] 2022. In fact, that 
is what the DEC VT-220 and higher terminals did, so that's what we did. Jeff did a prodigious amount of 
work on implementing that on Kermit 95, and Joe did the same in MS-DOS Kermit.  

Bochannek: You, Frank, were—  

da Cruz: I was doing C-Kermit and C-Kermit does not have a terminal emulator. It makes a terminal 
connection, but you're seeing it through your own console screen and that's where the terminal emulation 
occurs; the part where it places the cursor and formats the screen and so forth, but C-Kermit does convert 
between character sets on the terminal connection. Actually, I think I wrote the first VT-220 emulator for 
OS/2 C-Kermit, right? After that, Jeff did all the terminal emulators. For file transfer, you needed protocol. 
Again, we had to negotiate—we had to add features to the protocol where you would negotiate— it’s the 
problem where you need a common intermediate representation, because for example, in the early to mid 
1980s, people were making PCs and selling them all over the world, and every company that made a PC 
to sell it in Argentina, or Korea, or Poland. They would say, “Oh, we've got to put Polish characters in here, 
or they won't buy it.” They just invent some character set and put it in the PC. IBM had a de facto 
standard in their PC code pages, and in their mainframe Country-Encoded Code Pages, which were, of 
course, different from the PC code pages. IBM had a huge repertoire of international and national code 
pages. Incidentally, you've probably been contacted by somebody trying to get to that stuff that I sent you 
[FDC: Internal IBM documents that I donated to the Computer History Museum]. They were different from 
everybody else, because DEC had other ones, HP had other ones, Apple was completely different.  

Altman: And Microsoft.  

da Cruz: Microsoft, right. Windows was different from DOS. This was before Unicode, so we said, “You 
have to break it down by the category of character set.” If it's west European languages, east European 
languages, languages that use Cyrillic, Japanese, Hebrew, Arabic, those were the main ones that we did. 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 40 of 57 
 

We did the ones that people were screaming for, not necessarily just, “Wouldn't it be cool if we did Linear 
B.”  

Catchings: Klingon.  

Altman: I'm sure somebody did.  

Somebody: Swahili...  

da Cruz: Swahili is just Roman characters. We go to the standards. ISO has a whole series of standard 
character sets. For west European character sets, it's 8859-1, Latin Alphabet 1. Then, we make mappings 
between every western European private code page to Latin 1, and from Latin 1 to every western 
European private code page, and same thing for eastern European languages and Latin 2, same thing for 
Cyrillic, same thing for Arabic, same thing for Hebrew, for Japanese—Japanese being much harder, 
because I can't even begin to—well I could, but it would take a long time. It's a very complex writing 
system. Again, I think the computer representations of it are even more complex. Those days, we did it. 
We actually were able to convert between Japanese EUC [Extended Unix Code], Shift JIS [a PC code 
page based on Japanese Industrial Standards], and all these different representations that they had for 
mixing Roman letters, Katakana, and Kanji, and, for that matter, Cyrillic, because for some reason, they 
always include Cyrillic in all their character sets. I never really understood why.  

Bochannek: You've become involved in the Unicode effort as well, during that time.  

da Cruz: Tape time?  

Bochannek: Actually, you can answer this one real quick, your involvement in Unicode standardization.  

da Cruz: When we were doing Kermit 95, and Windows; I won't say the one good thing, but one of the 
few good things about Windows '95 and later is that it's based on Unicode, but Unicode did not include 
many of the characters that we needed to do terminal emulation. Mostly; not letters so much as box 
corners, and slanted things and whatnot, and so I wrote a series of proposals to have them added to 
Unicode, which were approved, along with something else I thought would be very useful; hex byte 
pictures, FF, or AB or B0, so that when you were displaying a character that was not in the font, or if you 
wanted to dump a character screen—like, a character screen in a Unicode based, say, terminal emulator, 
you could look at the hex values of the characters that were coming across, like the data analyzer that 
data communications technicians use. This proposal was turned down, but people keep asking for it. It 
keeps coming back up. Someday, they're going to put it in.  

Altman: In terms of Unicode and the file transfer perspective, what Unicode provided to Kermit was a 
uniform intermediary character set that you could use to go between any of the groupings that— 

da Cruz: I didn't come to the point where I explained that the user would actually have to say which 
character set family they were using, so that Kermit could set up the proper translations.  

Altman: Right, and Kermit was limited, in that you couldn't go from a Latin 1 family to a Latin 2 family or a 
Latin 7—  

da Cruz: Well, you sort of could.  

Altman: If you were using characters were being translated, you would get—  

da Cruz: It would actually turn them into ASCII.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 41 of 57 
 

Altman: Well yes. But Unicode solved that in that there was now a uniform intermediary that the user—  

da Cruz: It didn't solve it, because if you're trying to transfer a Polish file to, like, a computer that only had 
CP437; even if Unicode was the intermediary, you'd still get the same problem.  

Altman: You would get the problem on the far end. It would be a local translation issue, not—  

da Cruz: Right. But the good thing about it was that from now on, the user wouldn't actually have to know 
the details of setting up the translation. The thing is, the people who were eager to do this, they didn't 
mind having to know the details. They craved just having the ability to do it.  

Altman: Another thing that got added to C-Kermit around the same time as the Unicode work, was auto-
detection of file types.  

da Cruz: Right.  

Altman: Was—  

da Cruz: Yes, we're entering the days now where users don't want to know anything. They just want it to 
work.  

Altman: Also, you're saying, “Here, translate this entire directory tree of 15,000 files across 5,000 
directories,” and they're a mish-mosh of everything. You can't say, “Have a user pick out which one's a 
binary file and which one is a text file, and which one is a PDF [Portable Document Formant], which has a 
binary file that looks like a text file.” You have to provide mechanisms to automate this on a file by file 
basis. [FDC: And you can’t base on the file name or “extension” either because users can name files 
anything they want.] 

da Cruz: Right, you actually have to look, do the kind of thing that  Microsoft does, and look inside the file 
first, and try to figure out what's in it; it's an atrocity, because—but it works, it's really nice, but what if you 
screw up?  

Altman: We had algorithms that Frank developed for detecting whether a file was a seven bit ASCII, an 
eight bit single-byte character set, or Unicode, etc, by scanning the first X number of bytes of a file, 
whether it would be PDF or not PDF, and we did a pretty decent job.  

da Cruz: I haven't had any complaints yet.  

<overlapping conversation>  

da Cruz: Now maybe people don't—maybe people don't complain.  

Bochannek: One of the questions I wanted to ask you: We mentioned communities earlier, we 
mentioned sort of the global reach of Kermit, and the conference in Moscow in '89, it was called the first 
international Kermit users conference.  

da Cruz: First and last.  

Bochannek: The only one, right? How did that happen, how did that come to be?  

da Cruz: First in 1987, we were invited to Japan to a DECUS conference. DECUS was a big deal in those 
days. Thousands and thousands of people come, and they spent a lot of money; the airfare alone, they 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 42 of 57 
 

put us up in first class hotels. Word gets around. The next year, we said, “Well, gee, I wonder who's going 
to invite us to go someplace this year.” That time, we were invited to Swiss DECUS. When we go to one 
of these places, we also go around—when we went to Japan, we said, “As long as we're in the 
neighborhood,” [and] we went to Hong Kong and Macau, and some other places, and met people. Then 
we went to Swiss DECUS; we went to Germany and met Gisbert Selke who is the translator of the two 
books that were translated into German. He's a good friend, and also a very funny guy. Since I had lived 
in Germany—I'd lived more north—I wanted to see the old neighborhood but it was too far. We didn't 
have that much time. We met in Ludwigsburg, and then we went to Paris, where they had something 
called Club Kermit. The French people who like Kermit, they get together and enjoy it.  

Catchings: It would have been Ker-mee.  

da Cruz: Yes, right, I—  

Bochannek: Was there another Kermit club anywhere else that you're familiar with, or was it a uniquely 
French thing?  

da Cruz: I can't think of another one, but who knows? They actually had a club, and they had a 
newsletter and logo—did I send you that little frog toy?  

Bochannek: You did.  

da Cruz: Yes, the petit grenouille.  

Bochannek: I believe so, I'm not sure.  

da Cruz: It's a little frog with a cowboy hat. That was their emblem or something. They bought truckloads 
of them and gave them to everybody. They translated the MS-DOS Kermit book into French.  

Bochannek: We're trying to get to the Moscow conference.  

da Cruz: By that time, we had a reputation like a road show. Now around this time, we were working on 
the international character sets, and so the people who were most interested—the Japanese people were 
interested. The guy who wrote the MS-DOS Kermit book is also the one who worked with us on 
implementing the Japanese part of the software. And the Russians. The Russians have the same 
problem everybody else has. They want to have Cyrillic writing in their computers, but every different 
computer—this one comes from Bulgaria, that one comes from East Germany, this one comes from 
Poland—they use different representations. Plus, they have IBM mainframe clones that use EBCDIC 
versions of Cyrillic. They had those BESM [Bolshaya Elektronno-Schetnaya Mashina, “Large 
Electronically Computing Machine”] computers. Basically, I worked the protocol out, the details of the 
protocol, with a guy named Konstantin Vinogradov, Kostya, of the International Centre for Scientific and 
Technical Computing in Moscow, the organization that hosted the conference. Well, I don't know if I 
actually can say that he was the only one who worked on the details, but he was the one I worked with 
directly. They were on BITNET by that time, surreptitiously. You couldn't do it openly. We were able, with 
e-mail, to correspond and to work it out. Several of the people there spoke pretty good English. At one 
time I spoke Russian, but that was 20 years before. We could understand each other. I have to say, those 
people were really smart, and something that I came to appreciate when I went there, is that when they 
have to work with such restricted resources, they have to be extra smart to get anything done. Americans, 
they were so used to   saying, “We'll just buy it, spend more money, get more power, buy more memory, 
get a newer one. The Russians couldn't do that. They were able to do amazing things with their brains. 
Anyway, we worked out the whole protocol; it's all written down with their names and everything. There 
was the Level One protocol, which is the one where you announce—the one I just described, where you 
translate from your local encoding to one of the group of standard encodings, and then back to the other 
local encoding. A Level Two protocol that was never implemented was based on ISO 2022, where you 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 43 of 57 
 

could actually switch character sets in midstream, and transfer any mixture of scripts in a single file. If you 
had a document that's written in Russian, that's describing some Greek poetry and passages from the 
Bible in Hebrew, you could send that. This is only two years before Unicode. By the time Unicode came 
out, we didn't bother to implement it.  

Bochannek: The conference was established based on that personal connection with the gentleman who 
helped with the Cyrillic character set work?  

da Cruz: Yes. Well, his boss. The boss' name was Yuri Gornostaev. He wasn't the big boss, but he was 
the boss that we dealt with, and he was a really nice guy. They're all really nice and fun loving, I might 
add. They really know how to put on a show. They had a huge conference hall, and the equipment wasn't 
as fancy or anything; they just had an overhead projector, but they brought in so many people to attend 
the conference, from Bulgaria, East Germany, Cuba, all parts of the Soviet Union—you have the list. We 
spent several days because they all viewed the protocol, we gave demonstrations. We had hands on 
sessions and then we spent a whole day talking about the character set extension to the protocol. Some 
people made good suggestions that we incorporated. It was very lively and people would jump up and 
ask questions. We had this simultaneous translator.  

Bochannek: Who all went from the project?  

da Cruz: Christine and I.  

Bochannek: Okay. The conference was how long?  

da Cruz: The conference itself was three days, I think.  

Bochannek: Then you had a chance to travel?  

da Cruz: Yes. Then, they took us all over the place. They paid for everything except the airfare. They 
couldn't pay for that.  

Bochannek: Right.  

da Cruz: I actually got Columbia to pay for the airfare, on Aeroflot.  

Bochannek: Now the Kermit project got terminated last year, 2011, and what is the current status of the 
particular versions of Kermit and the project in general?  

da Cruz: When they decided to shut it down—they wanted to shut it down I think on January first.  They 
wanted me to wrap up the business. All they were concerned with—I had 1,000 Kermit 95 bulk licenses 
that have a service contract. Many of them were still active, in which they paid an annual fee for 
continued support, which I was becoming increasingly embarrassed about. We hadn't released a new 
version in some years, since Jeff left. I can't tell you how hard I tried, and how much effort I put into 
getting Columbia to let me spend the money that I earned, to pay Jeff to make a new version. You'll have 
to keep this part for 50 years, and then unseal it or something. They just took the money and spent it on 
whatever. They wouldn't let me spend the money that I worked 80 hours a week to come out that far 
ahead so that I could have money to invest. Anyway, they just wanted to wrap up all these contracts. This 
is when they turned—they turned me over to the enterprise whatever office and it was this long painful 
process of contacting all the licensees, saying, “It's the end of that.” They still are selling Kermit 95 with no 
support. The thing that distinguished Kermit 95 from everything else on the planet, I believe, was the 
support. Anybody could call us up or write us e-mail and we talked to them or answered their e-mail. No 
call processing system, no tickets, no nothing.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 44 of 57 
 

Altman: Pretty close to 24-7.  

da Cruz: Yes.  

Catchings: And no credit card.  

da Cruz: Yes, right.  

Bochannek: Now, there is not a GPL-ed [General Public License] version of Kermit as well, correct?  

[FDC: I think Alex was actually asking about the status of Kermit 95 and C-Kermit after the shutdown of 
the Kermit Project.  These programs, and by implication all the others, were re-released with the “Modified 
3-clause BSD License”, which is an Open Source license.  We did not use the GPL.  Kermit 95 could not 
be released in usable form because it included a lot of proprietary code from other companies that 
licensed us to use it, but not to give it away or publish it.  So we put all the source modules we could on 
the new Open Source ftp site in hopes that some day, somebody would start working on it again and, as 
of late October 2013, somebody is.  Check the kermitproject.org website for news.  The following was in 
response to Alex saying “GPL”.] 

da Cruz: In 1990, Richard Stallman said that he was going to write open source versions of Kermit and 
put us out of business, because our software wasn't free.   

Altman: I would have liked to see him try.  

da Cruz: Well, I know.  

Catchings: He and reality weren't always that closely related.  

<overlapping conversation>  

Catchings: He doesn't know me, it's okay.  

da Cruz: He's all right.  

Altman: He knows me.  

Catchings: I didn't say he wasn't all right. An interesting character.  

da Cruz: Anyway, we went back and forth, and what I finally agreed to do was to write a minimal, 
absolutely minimal, implementation of the Kermit protocol with a GPL, which I did. I said, “This is going to 
be an example of eternal software. It's not going to be upgraded and it won't need to be upgraded unless 
they totally change the C language so it won't compile anymore.” It's completely ANSI Standard. It follows 
every rule, complies with everything, and it doesn't call any APIs [application programming interface] that 
are not universal, except, there's a couple of conditional things. Anyway, it turned out that way. Here we 
are, 12 years later, and there hasn't been a new release, and there hasn't needed to be. Anyway, I don't 
know if anybody ever used it.  

Altman: Well, it's distributed with Debian and other Linux packages.  

da Cruz: Now C-Kermit is distributed with Debian and with Red Hat.  

Catchings: It's open source.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 45 of 57 
 

Bochannek: A related question to that; the longevity of Kermit. What do you think were the successful 
features of Kermit that contributed to its longevity?  

Altman: It worked. More so than anything else, it worked.  

da Cruz: I mean, we stood behind it. We helped people when they had trouble with it. We explained it, we 
documented the heck out of it. When I came to work here, I had the regular kind of System Administration 
jobs or programming jobs, and I enjoyed it, it was fun. Then Kermit was something different, because it 
was like a creation. We weren't just modifying some accounting program, we were creating something 
new. It was something that people needed and appreciated. It was fun, and then we got all this 
recognition. People from all over the world came to us for this software. Bill left too early, and Jeff came 
too late, but we got invited all over the world. It was a quite a ride, it was really a lot of fun. Until 1994, I 
had a real job here. First I was the manager of the academic timesharing systems. Well, first I was a 
systems programmer. Then I was a manager of the academic timesharing system. Then I had a job; 
something called the manager of systems integration and that meant that anybody who bought a 
computer at Columbia had to come to me to get my permission and I would try to talk them into buying 
something that would mesh with the other things that were on campus. I’d warn them about what the 
consequences would be if they bought something else. Then I became the first manager of the networks. 
I [my group] put in the first Ethernet, and later the first campus network to every room of every building 
over the new telephone wiring plant. The last thing the group did before I left it was wiring all of the 
dormitories for Ethernet. Then in 1994—now this is just about when Jeff was coming to develop Kermit 
95—I went to the management and I said, “I want to just do Kermit. We'll earn enough money to pay for 
it.” They said, “Okay.”  

Bochannek: A question that ties directly to that is major turning points on the project. That sounds like 
that was a major turning point. You were dedicated to just doing Kermit.  

da Cruz: Yes, 1986 was a turning point because we hired a production staff. 1994 was a turning point 
because the Kermit budget became an actual department of the computer center with people dedicated 
to doing it and not stealing time from their real job.  

Bochannek: The next question you can take to be a technical one and that's about choices you made 
that you regret as it pertains to the project. Is there anything that comes to mind? There in the Kermit 
book there's a checksum issue. There's a—?  

Catchings: It would probably be my fault.  

da Cruz: No, no, you fixed it.  

Bochannek: How about in a larger sense, any particular choices that pertain to Kermit that you?  

da Cruz: There's a lot of things in the protocol that I would fix if I could do it over. For example, the 
checksum is not identified in the packet. It's stateful. You say, “Oh I'm in this phase so the checksum must 
be the two bytes on the end.” Well, the protocol would be so much simpler if  the checksum were clearly 
marked in each packet. 

Catchings: On the other hand, the fact that it evolved over time was I think one of its strong—that's the 
tradeoff. On the one hand, because we kept being backward compatible that meant that we had to live 
with the mistakes that happened in the past. I think that's the tradeoff.  

da Cruz: Anyway, there was never a problem except just—this is interesting that you don't know about it. 
The ocean floats—at the University of Washington, they deploy these floats in places where there's 
hurricanes in the ocean; buoys that can submerge and come back up repeatedly. During the hurricane, 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 46 of 57 
 

they go up and down and up and down and they measure the temperature and salinity and current at 
different depths and then they pop back up and then they use Kermit to send the data to a satellite that 
sends it back to phone home. They use E-Kermit for that, the embedded version. They've been doing that 
for a long time. Now they're expanding the project and they're getting-- they're going someplace that's 
farther away from the satellite. I think they're going to Thailand or something. They discovered that it's just 
too slow. It's a 300 baud connection. It's extremely noisy. They needed one thing that E-Kermit didn't 
have which was true Sliding Windows. E-Kermit is unique in that it fakes that it's doing Sliding Windows 
but it isn't really doing them. The other side thinks that it's doing them but if there's an error it’s just, “Sorry, 
game's over.” He implemented true Sliding Windows. I had the outline sketched in there and he filled it in.  

Hendrie: Who's the he?  

da Cruz: His name John Dunlap. He's a physicist at University of Washington. I would have invited him 
but I lost touch. Anyway, for this new project he wanted to do serious testing in advance and he did 
something that I had always wanted to do myself and never had time. Suppose you had two computers 
with Kermit on them and you're transferring files between them. You want to put a box in between them 
which simulates all kinds of different delays and noise so it can buffer up the packets and send them out 
of order [corrupt them, drop them] and do all kind of crazy things. It would just completely stress test the 
protocol to its limit. Well, he made that box and he ran tests for weeks and weeks. He found that there 
was one place where Kermit would consistently fail if a packet was corrupted by noise in a certain way 
then the checksum would still agree if you calculate from the rest of the packet. That's on the first packet 
because the first packet always has the six-bit checks on them. The last thing I did in Kermit protocol 
before I left Columbia was to define a new protocol whereby the user could say to put 16-bit checksum on 
every packet including the first one. That's what it was. If the first packet was corrupted but appeared to 
be correct and it was corrupted in one of the negotiation parameters?  

Catchings: Oh, right, right. Yes.  

[FDC: For example, a compression or quoting negotiation was mangled without being caught. The file 
transfer would proceed but the file receiver would misinterpret the coding used by the file sender and 
produce a corrupt file. The reason the first packet always has a six-bit checksum is that Kermit protocol 
was designed so it could be implemented even on computers that could do only 8-bit arithmetic.]  

da Cruz: Yes. Then I even figured out a way to make it automatic at least to the extent that you only had 
to do it on one end and the other end would recognize that it had been done.  

Bochannek: Let me ask you a related question that I meant to ask earlier; in what scenarios would you 
not use Kermit? We mentioned this Army knife aspect of it earlier and we had so many stories about how 
flexible it is, but have you run into situations where that type of a problem that seemed to be solvable with 
Kermit just simply wasn't?  

da Cruz: You're talking to somebody who uses Kermit all of the time, every day for everything.  

Catchings: Right.  

da Cruz: If I need to write a program to do something I write it as a Kermit script.  

Altman: Yes, I'm still using Kermit and I haven't touched it in eight years. It's still my terminal emulator of 
choice on modern day Windows, even though the basic code dates back to 2003 for the revisions that 
we're using. The challenge of Kermit is that there's a huge selection of things which Kermit does where 
there's an alternative, where the alternative only does a small subset or a small overlapping intersection 
with the Kermit feature set. In many cases, the tools that you choose are based upon the things you're 
comfortable with. If you have a set of problems which Kermit is good at across the board, then you're 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 47 of 57 
 

going to use Kermit for many solutions based upon the fact that Kermit implements Telnet and Rlogin and 
terminal emulation and FTP and—  

da Cruz: It's programmable.  

Altman: —and has the scripting language and has other things. If all you need is a Linux terminal 
emulation over SSH, you're probably going to choose PuTTY over Kermit 95. What you're limiting yourself 
to is the fact that it's going to be a very low end terminal emulation which is good for most editing in 
EMACS but isn't going to be good enough to run a VMS application.  

Catchings: But no one cares about VMS any more.  

Altman: Right. But for the 99.9 percent of users, they don't care about that. It's always the edge cases. 
It's the edge cases that always made Kermit special is that we paid attention to the exacting details of 
terminal emulation. We paid attention to the fact that the Kermit character sets implementing ISO 2022 
properly, handling the mapping of ISO character sets to Unicode in the terminal. Even going so far as to 
contract or to work with Everson to have a—  

da Cruz: Oh, Michael Everson.  

Altman: Michael Everson to produce a monospace Unicode font that actually included all of the character 
sets that Kermit supported so that we could actually display most of Unicode on Windows in a terminal 
session. There was nothing at that point in time.  

da Cruz: 20 people in the world would care about that.  

Altman: But we cared.  

da Cruz: You could have a session of Mongolian terminal emulation on Kermit.  

Altman: It's the fact that we handle all of the edge cases which really made Kermit very flexible and 
powerful and why people—and like I said earlier, it worked. In general, it worked. I mean are there bugs in 
the software? There are bugs in all of our software.  

Catchings: I was going to say; it's software.  

Altman: For the most part it works. Users they deploy it and it still runs.  

da Cruz: Jeff did an amazing job because most applications will break when a new version of the 
operating system comes out. Since Jeff wrote Kermit 95 for Windows XP and it's okay in Vista. It's okay in 
Windows 7. As far as I know, it's okay in Window 8.  

Altman: Well, we could try it.  

Bochannek: That's actually a great dovetail; what accomplishment are you most proud of? There's 
actually two of the three—  

da Cruz: Actually, I wanted to expand on the previous thing a bit. Like I said, I'm sitting in front of Kermit 
all day, every day and what I do now to keep myself busy and supplement my retirement income is a 
website. The website is based in Unix. I have a terminal emulation to the Unix system. The website is 
heavy on images so I'm always editing images on the PC in Photoshop. I'm transferring the images back 
and forth with Kermit file transfer protocol, in the same session where I edit the web pages. All of the 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 48 of 57 
 

scripts that maintain the website and get statistics about it reported are all written in Kermit. Every single 
thing that I do to maintain and develop and account for a pretty big comprehensive website is completely 
done in Kermit. I don't use any other tool except Photoshop. Kermit even knows something about images 
that—for example, if I have a bunch of images that are landscape and portrait Kermit can detect which 
ones are landscape and which ones are portrait. You can write a script to format a webpage that's full of 
images to mix landscape and portrait and have them all be the same height.  

Bochannek: That's interesting. So accomplishments; what are you most proud of?  

Hendrie: Can you describe this website?  

da Cruz: I'm not telling.  

Hendrie: You don't have to tell me the name of it. I don't want to go to it. But what it's for?  

da Cruz: It's an Amazon Associate website.  

Bochannek: An e-commerce site.  

Hendrie: An e-commerce site for an Amazon Associate.  

Altman: I'd like to go back and answer your question regarding the things that we wish we could have 
done or done differently. The biggest problem that I always felt was Kermit's weakness in moving forward 
was that we're still in, around 2000, a monolithic application. The scripting language, the terminal 
emulation, the file transfer, all of the underlying transports, the security modules, it was all one big 
package and you either got all of it or none of it. In the period from 98 through 2003, there was an 
ongoing transition to modularity, especially on Windows development of DCOM [Distributed Component 
Object Model]. The desire to be able to embed—it would have been nice to have been able to embed a 
terminal emulator into a web browser, relying on that feed for proxy services. We had to implement HTTP. 
We had to implement a variety of other things to allow us to go do transfers for the Web proxies. The 
scripting language given the way it's implemented when integrating into the terminal emulator are 
synchronous. They can't be running asynchronously. We can't run multiple instances of the scripting 
language engine at the same time. We weren't able to detach that and replace it with—I loved REXX 
[Restructured Extended Executor]. We had an OS/2 C-Kermit. We had a way to call out to REXX and call 
back into Kermit from REXX. We had a callback mechanism. On Windows we never really were able to 
get to a point where we could replace—today, you'd want to use PowerShell, for example. Our desire to 
maintain backward compatibility across all platforms placed constraints. Our need to ensure there was 
one code base across all platforms because we didn't have the staff to support independent builds. We 
needed it to be possible for us to implement, maintain one implementation of the protocol module one?  

da Cruz: Kermit 95 about half of it is C-Kermit.  

Altman: Kermit 95 provides a GUI layer on top of it. It provides a terminal emulator. It provides all of the 
I/O networking and security infrastructure and all of the plumbing for the operating system. It relies heavily 
upon C-Kermit for most of the logic. C-Kermit is implemented as a single threaded monolithic application. 
That provided constraints on what we were able to do.  

da Cruz: Again, that's because it has to run on all the Stratuses and VMS and AOS/VS and Plan 9 from 
Outer Space, not that all those things still exist in large numbers or at all. I never wanted to release a 
version of Kermit that could not be built on all of the platforms where it was built before. Even if I can't 
prove that it can be, I never wanted to deliberately say, “Sorry, we're cutting you guys off.” Because it 
turned out years after I thought AOS/VS had disappeared from the face of the earth I learned that the US 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 49 of 57 
 

Forest Service was completely dependent on it. They couldn't have lived without my support of AOS/VS 
C-Kermit.  

Bochannek: What was the most fun about the project? What was the most enjoyable?  

Altman: For me it was the lab. It was an educational lab. Anything I wanted to learn I could learn by 
implementing in Kermit and somebody would make use of it for something. Seriously, that is not an 
exaggeration. The Named Pipe support that we implemented, that I implemented in OS/2 C-Kermit and 
the NetBEUI support which ended up being in one of the OS/2 journals.  

Catchings: da Cruz: It's in the museum (the OS/2 journal). I saved all of that stuff.  

Altman: I saved a lot of it much more than my wife was happy with me saving. All of that work was done 
not because there was anybody asking for it. It was because I was trying to learn as much as I could 
about OS/2 and file systems. I implemented as many of the techniques and things as I could in Kermit to 
solve a problem. Once it was there in the toolkit you could make use of it. In the company I was working 
at immediately prior to coming to Columbia to work on Kermit 95 fulltime, having built the Named Pipe 
support as something to do we found the problem that allowed us to communicate information from 
Raleigh to New York over the file system network that was built between the two pipes. We didn't have 
public Internet. They had a private network for the file system that was dedicated for that purpose. We 
were able to do name pipe communication to transfer information across that.  

Bochannek: How about you, Bill? What was the most fun?  

Catchings: For me, it's always easy. The most fun was coding. To actually get to code stuff that would be 
used. Any people who have done software development know that sometimes your best code never gets 
used by anybody but you. To actually be able to write something that really mattered and did something 
was very cool. I mean you asked earlier about what I'm most proud of or whatever and the thing I really 
liked about Kermit was that I think it somehow managed to meld together two ideas that almost make no 
sense together. On the one hand, this was something that was freely distributed but was treated as a real 
product. People cared. It was supported. It was a real pride and ownership. On the other hand, and this is 
probably its downfall too, was it was not meant to be a for-profit thing. It was not meant to make a ton of 
money. On the other hand, that meant it's continued to work even 30 years later because it wasn't like 
well, it's not making enough revenue it's cancelled. That somehow it's a real product but it was something 
we were real proud of. I was only there for a while but I was really proud to have been a part of it. I think 
that sums it up for me.  

Bochannek: What about you Frank? Is there anything either of you want to add in closing, I think?  

da Cruz: I'm proud of Kermit. I'm proud that it got all over the world and people knew about it. In fact, in 
some ways that had a different side to it in that; for example, big cheeses from Columbia would go to 
high-level conferences and they'd come back and they would say, "What is this Kermit everybody is 
talking about?" "You're from Columbia, that's where Kermit is from." It kind of made them angry because 
they didn't even know what it was [and everybody was asking them about it as if it was the only thing they 
knew about Columbia]. I think in the end the thing that I'm most proud of is that I was able to make—help 
a lot of people get real stuff done and provided jobs for—I haven't calculated it, but I think it's something 
like fifty [sixty] person-years of fulltime work for people in a non-oppressive environment. We had a lot of 
fun. We used our creativity. We wrote the code. Nobody was getting bossed or yelled at. This is the room 
where the meetings were held. I don't think you guys were ever in this room in a meeting about Kermit?  

Catchings: I don't think so.  

da Cruz: Right. We never had not one single meeting. We didn't need them. We all worked in the same 
place. If you want to talk to somebody you walk down the hall to their office.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 50 of 57 
 

Altman: You didn't walk down the hall and talk to me. I was never here. I think a simple anecdote one of 
my criteria for taking the job was Columbia was going to buy me a best of line laptop at the time which 
was, I think, a ThinkPad 701. I used it to work from wherever, even from South Africa, when I was 
traveling around South Africa for three weeks. I would literally stop at bars or inns and find somebody that 
would let me plug into their phone network to dial up through IBM's global net to come back to Columbia 
to exchange mail and upload code and download patch changes for the day. Answer tech support e-mails. 
Do builds and upload them. That was a ridiculous phone bill metric.  

da Cruz: Yes, we built a tool that was not only used by all kinds of people for all kinds of stuff including 
kind of boring stuff like I can't tell you how many cash registers that are just PC's running Kermit. We built 
a tool that was really handy for us to use ourselves. We put a lot of stuff into it just for us because we 
needed to have that thing in it. I'm glad we did because now I use it all day, every day and I use those 
things.  

Altman: I think, Frank, it would be worthwhile talking about the writings that you did after the Code Red 
scare regarding using Kermit in terminal emulation as an access way to e-mail.  

da Cruz: It's funny. Yes, Code Red was 2000, right?  

Altman: It was 2000.  

da Cruz: Everything I do all day in front of a computer is exactly the same way I did it in 1985. I use 
Kermit. I have terminal access to a bigger computer some place where I actually do my real work on a 
Unix server, where I do my text editing and e-mail and everything. When people walk into my office and 
they see me doing that, they say, “What is that? What's that blue screen with the little white squiggles on 
it? Where's all of the spinning things and things popping up?” Around the year 2000 everybody was going 
into a tizzy because there was another virus every week that would knock the whole network off and 
wreck all of the PCs. It infected everybody except me because even though I had Windows on my 
desktop the only thing I used it for was Kermit and Netscape. My e-mail was a text-based e-mail program 
on the host. When somebody sent me a virus, I saw the virus. It didn't execute on me. Whose idea was 
that I could send you e-mail that contains a program that will execute on your computer? This was MIME 
[Multipurpose Internet Mail Extensions]. If you go back to the archives of the MIME discussions, you'll see 
me in there making these rants. Basically all of my arguments, I thought, made sense. The end of the 
discussion was, “Well, this is really just a pro forma discussion. It's already decided.” Big companies, they 
want to have all of these cute things that happen by magic and astound the users. That's what they're 
going to get and that's what they got. To this day I mean every single—updates, updates, new version, 
quick update, don't turn off your computer. When I first came to work here we were running OS/360 21-
point-something on our mammoth IBM 360/91 [whose control console is in the Computer History Museum 
collection]. We had been running it for 10 years and we were thinking about upgrading to 21.8. When we 
finally got around to it, it was completely ready and debugged. Then we ran that for another ten years 
before the 360 went out. When we had the DEC-20, we had source code for everything. They would send 
patches. The patches were source code. It was DDT [dynamic debugging technique]. We'd read them 
and we'd look at the source code. We'd say, “Does this make sense?” We wouldn't just install things on 
our computer without knowing what they were. Now we're running—Windows XP was 80 megabytes of 
kernel or something, some crazy thing like that. Nobody even knows what's in it. Nobody.  

Altman: Sure you do. The source code is posted on the Web.  

da Cruz: Is it?  

Altman: It was stolen, the 2000 code; it's up there.  

da Cruz: All of it?  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 51 of 57 
 

Altman: Large portions of it.  

da Cruz: Yes, but there're so many things that nobody even knows what they all are; even people who 
work at Microsoft. There can't be any one person who knows what it all is, right. It's too much.  

Altman: I wouldn't even say for a project the size of AFS [Andrew File System] that one person really 
knows all of the code. There're nine million lines.  

da Cruz: What can I say. I'm a dinosaur. I come from the days where you could understand the computer. 
You could even understand the electronics of it. You could understand the gates, and the logic and the 
memory and everything. Now, we're helpless. We have no idea what these things do, how they work, 
what they're doing to us, what they're telling other people about us. Anyway, so I wrote this thing where I 
said here's how I do my work. I use Kermit. I go to the Unix server and I use MM [Columbia Mail Manager] 
for e-mail. MM from the DEC-20. We rewrote it in C and I'm still using it. I'm probably the last one who still 
uses it. It doesn't have any MIME support whatsoever. I see the actual base 64 on the screen. Usually, it's 
stuff I don't want to read so I just delete it. If it's a message that maybe it's from somebody that I know 
that sent me a picture or something I download it because MM has Kermit. It will download the message 
to my PC and automatically pops up in whatever—?  

Altman: Photoshop.  

da Cruz: —then I see the picture. Only after I look at it first to make sure it's not a booby trap or 
something. What else? In those days, it was just too dangerous to even conceive of using Internet 
Explorer on your desktop, so I basically said, “Don't use it. You can stick with Netscape because it might 
not be any better but all of the attacks are concentrated on the Microsoft products.” Columbia said, “Put a 
big disclaimer on it, that's your opinion, this is not the opinion of Columbia University. We do modern 
things and we're cutting edge and we're the leading edge of enterprise computing. And here you are 
playing with these ancient tools.” I said, “Yeah, but look. I get more work done in a day than everybody 
else gets done in a week.” In those days, the computer centers in the different universities used to publish 
newsletters. One day, the University of Oregon newsletter came and there was my article. In other places 
they would say, “This is the best thing I ever read.” It's sad because Columbia was on the very forefront of 
computing in the 1940s and all through the '60s. Then it just lost it. It completely lost it. Other things in life 
are more important than computing, but it's not like Columbia turned towards those things. It turned 
towards Wall Street basically. Money, money, money and real estate, real estate, real estate and 
snapping everything up and evicting people and raising rents and raising tuition. Are people learning 
anything more? Are people learning better stuff? I don't think so. In the 1960s all of the students here 
knew about the world. They knew what was going on. For one reason because it was a male college and 
it wasn't co-ed yet. Everybody had the draft hanging over their head and there was a war going on. Now, 
we have six wars going on at a time and nobody even knows what they are. Columbia students don't care. 
As long as they have their iPhones and their Starbucks, that's their whole life. You better delete this whole 
part.  

Catchings: Redacted.  

Bochannek: That's okay. Any other thoughts? We're in the open discussion.  

Altman: I think that working on Kermit was a blast. I don't know how many years I worked on it.  

da Cruz: Jeff worked even more hours a day than I did and that's saying something. He would be online 
any time day or night.  

Altman: Well, that's true and it's not true. What I loved about my time at Columbia, working on Kermit 
more so than at Columbia specifically, was that our user base was scattered around the world. There 
wasn't a good time of day to work. There was a good time for the people in Australia and there was a 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 52 of 57 
 

good time for people in Japan. There was a good time for the people in Eastern Europe and in Western 
Europe and here in the US. My work schedule was work a few hours in the morning, go off to go do 
something. Come back, work a few more hours during the day, go out and take a dance class. Come 
back, work a few hours go off and play volleyball. Go out drinking, come back work until a few more hours 
over night, go to sleep and start the routine over in the morning which might include going horseback 
riding in Central Park or playing golf or Frisbee. During the time that I worked on Kermit fulltime, it was a 
very—even though I worked long hours and basically seven days a week for the entire time that I was 
working on it, I never felt burned out. It was well-integrated into everything.  

da Cruz: You get a lot of energy out of creating things instead of just doing something that somebody 
tells you to do.  

Altman: I didn't have to come to a specific office every day. It didn't matter where I was as long as I could 
get online to do the job. It was very rewarding because people would send the e-mail and they would be 
having a problem. We had built into Kermit 95 and into C-Kermit all of the things you needed to do from a 
debugging perspective to capture data, to send to us, the things that we would need to be able to 
recreate exactly what they were experiencing. I wish I could do that in AFS.  

da Cruz: Yes. If there's a problem, we would fix it and they would be just so flabbergasted [because most 
other software providers would not even talk to them, let alone fix problems in their software]. 

Altman: Usually, there would be a fix within a day for a terminal emulation bug. If I was able to come in, I 
would come to the office because I had to go grab a server off the rack more often than any other reason 
or on days when we were doing builds across just about everything. I mean we had Kermit 95 building on 
a version of Windows running on SPARC which nobody knew about. We had OS/2 running on MIPS 
[Microprocessor without Interlocked Pipeline Stages]. We had a version of OS/2—was it the 64-bit version 
of OS/2 that we had. It was something IBM never ever got released. We had Kermit running it.  

da Cruz: Oh, yes. We had tons and tons of equipment that manufacturers would give to us so that we 
could develop Kermit for it.  

Catchings: It would be ready on day one when they went public.  

Altman: They probably couldn't even use it until?  

da Cruz: Or even the opposite. For instance, Data General, when they started to go downhill, people all 
wanted Kermit on their Data General boxes so they could get files off of it.  [FDC: Data General paid us a 
lot of money and gave us a lot of equipment so we could deliver up-to-date C-Kermit for AOS/VS and MS-
DOS Kermit to with Data General terminal emulation so their customers could migrate to PCs (I did C-
Kermit for AOS/VS and Joe Doupnik did the DG emulation in MS-DOS Kermit, and we had plenty of 
engineering support from DG, not to mention a wall of manuals.] 

Catchings: Right, for the transition.  

da Cruz: Yes. In the fairly recent years, I had this antiquated Data General Mini with a nine-track tape 
drive. They make some strange machines. Did you ever see the back of a Data General computer? It's a 
backplane.  

Hendrie: I worked there for five years.  

da Cruz: It's  just a huge matrix of thousands of pins sticking out. To connect something to it, you have to 
find the right pins to plug the plug into. Well, anyway.  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 53 of 57 
 

Hendrie: Very inexpensive to make that way.  

da Cruz: Yes.  

Hendrie: That's how it got that way.  

Bochannek: What about you Bill?  

Catchings: I was going to say, there seems like there's a certain irony here since as best I can tell all 
three of us have established that we may not work well with others. I know I've spent years not being able 
to work for other people so I work for myself.   

Altman: I really think you should qualify that. It's not that you don't work well with others. I think that “you 
may not take direction from others” might be a better qualification.  

Catchings: All right. There we go. A group of people who may well not take direction from others, worked 
on a product that allows multiple disparate different computers to communicate with each other. I don't 
know if that's irony or maybe that's somehow the whole point since that's how in order to work together 
you had to figure out ways of negotiating protocols or whatever. I don't know. It's an interesting contrast.  

Altman: I've always thought about computing as a tool. Computing in and of itself is never the end goal in 
life. We need tools and you need to allow other people to communicate and share information. I'm doing 
the same thing today with AFS that in a sense that I was doing with Kermit except I'm trying to do it now 
on a global scale where you're connected all of the time and anybody can share data with anybody else 
from anywhere in the world, any device that can be on the network. I'm just not supporting networks that 
are made up of two tin cans and a piece of string.  

da Cruz: Unlike Kermit.  

Catchings: Did you ever implement that one?  

da Cruz: It works automatically by itself.  

Bochannek: Any good user application war stories that come to mind that you want to share? Any crazy 
environments that aren't maybe already written up in the Kermit News. I mean the Antarctica story is 
written up pretty well.  

da Cruz: Yes, that was a good one. These guys in Antarctica had a PDP-11 which managed all of their 
inventory and supplies and it broke. I'm forgetting the details but somehow—they had a disk crash that's 
what it was. It wiped out the part of the disk that had their communication software on it which was Kermit, 
of course. They needed a new copy of Kermit. There wasn't going to be another flight for six months. If 
they didn't have the computer working to order the supplies, well, I suppose they could have found some 
other way to get them like calling someone on the phone or something. I don't know. They had to make 
the computer work. I actually put a new copy of Kermit on their computer without Kermit being there by 
getting RSX-11, by getting the binary turning it into a hex file, chopping it up into little pieces. Then dialing 
up through the satellite and just pushing the little pieces out into a process to copy them on to the disk. 
Eventually concatenated them all together and de-hexified them and they had a Kermit program, again. It 
wasn't easy because more often than not there would be a noise on the line or something like that so I 
had to carefully check every single piece. It took all day but they were real happy. Looking back, I don't 
think they would have died if I hadn't done that but still. They depended on the thing for—oh, wait a 
minute. I think I remember. They needed to have Kermit on there so they could send back all of their 
observation results because they couldn't just store them all up for six months because they didn't have 
the storage capacity. Besides, there was all of these people waiting in Florida to work on them every day. 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 54 of 57 
 

I think that's the story. So there was that. Instead of telling all of the stories like that, I just want to remark 
that one of the biggest frustrations of the last ten or fifteen years is that I could not get stories like this 
from anybody because unless it's a non-classified government agency or a nonprofit, certain kinds of 
nonprofits, they're just not going to talk about what they're doing. I would beg them. I would say this would 
be such a great story. People would tell me vaguely what they were doing and I said, “Gosh, could you 
give me permission, could we write that up?” They'd say, “No. No.” There're tens of thousands stories out 
there that I never heard. It's too bad because everything is all homogenized and bland and there's this 
one way to do everything and it's not very good, but everybody lives with it and it could have been much 
better.  

Hendrie: I have one question. I was just curious about how the code, what you wrote the original code in 
especially and then how it grew.  

da Cruz: On the website we have an archive of that broken down.  

Catchings: Originally, of course, you only wrote things in assembler. It was the assembler of whatever 
machine.  

da Cruz: 8080 assembler, DEC-20 assembler.  

Catchings: Then, finally, we smartened up and went with C.  

da Cruz: I'm not so sure it was smartening up.  

Hendrie: Up until the C version you wrote everything in assembler up until the C version pretty much.  

da Cruz: Well, we wrote everything in assembler up until the C version. I think the first person who sent 
us a tape with a new Kermit program on it was a VMS version written in Pascal. Then somebody else 
sent us—I should mention for these tapes, the Stevens Institute of Technology [in Hoboken] was a huge 
contributor to Kermit. 

Catchings: Early on, yes.  

da Cruz: We worked with them for years, they were right across the river, we could take the PATH train. 
We were networked with them on our little DECnet network with CMU, Stevens and NYU [New York 
University] and University of Toledo. All of them were Kermit contributors. Stevens was a big DEC 
installation. It was 100 percent DEC through and through. They had a big PDP-10 at the center. They had 
VAX's with VMS. They had Rainbows. They had Pro 350s and Pro 380s. They wanted all of these things 
to communicate. They must not have had a network at that time so they needed Kermit. They had the 
idea that they would write Kermit and common BLISS [Basic Language for Implementation of System 
Software] which was the DEC implementation language that runs on all of their platforms. They wrote the 
Kermit program in common BLISS and then with a minimal amount of filling in system dependent stuff 
they had it on the PDP-10 and TOPS-10 on VMS and on P/OS [Professional Operating System]. That 
was a big deal. In doing that we talked with them a lot. We also developed a lot of features in the protocol, 
a lot of the option negotiations and things are thanks to the discussions we had with them. It was Nick 
Bush and Bob McQueen. [FDC: Leslie Maltz was the director of computing.  Years later she came to work 
with us at the Columbia computer center.] 

Bochannek: Did you use software version control on the C-Kermit system?  

da Cruz: No. I'm proud to say we programmed the old fashioned way. We just hacked the code. Basically, 
whatever I did during the day I put it into a place where Jeff could find it [and then the next morning I’d 
pick up what he did.]  



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 55 of 57 
 

Altman: Yes, I could never convince him to adopt CVS [Concurrent Versions Systems] or anything else.  

da Cruz: Well, that's because the next day, "CVS??? No don't use CVS, nobody uses THAT any more!" 
Besides, I was swapping code back and forth with people, including myself, on platforms that did not have 
CVS or any other version control system. But at bottom, I just don't like bureaucracy.  

Altman: More importantly, we didn't use any type of autoconf or other configuration language.  

Bochannek: Right.  

Altman: The make file for Unix is the largest make file on the planet.  

Bochannek: It's making very extensive use of pre-processor directives in the C-files as well in the 
compilation system.  

da Cruz: Right. Not taking advantage of more modern features of the C language because you still 
wanted to compile on some of the older platforms. I just released C-Kermit 9.0 a few months ago and I 
built it on 4.2 BSD [Berkeley Software Distribution]. How many people can build their applications on 4.2 
BSD? I'm the only one. It's a big feature-full program. It does millions of things and it's only about two 
megabytes.  

Altman: Info-ZIP on their website had the most—their byline was the most portable application in the 
world after Kermit.  

da Cruz: No, actually it said—what was it? It was something like that. Hello World! was in there 
somewhere too. They decided that Hello World! was not that portable any more because to do it on 
modern platforms you have to have all of these prologues and epilogues. But it's true. You can build C-
Kermit on hundreds of combinations of hardware, operating system, and operating system version.  

Bochannek: I think that's it. Thank you very, very much.  

Hendrie: Thank you for taking the time and doing an oral history for the Computer History Museum.  

 

END OF PANEL SESSION 

 

 

 

 

 

 

 

 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 56 of 57 
 

For Further Reader and Background (as supplied by da Cruz): 

History of Computing at Columbia University: 
http://www.columbia.edu/cu/computinghistory/ 
 
IBM 407 (my first "computer"): 
http://www.columbia.edu/cu/computinghistory/407.html 
 
Wallace Eckert: 
http://www.columbia.edu/cu/computinghistory/eckert.html 
 
Columbia 1968: 
http://www.columbia.edu/cu/computinghistory/1968/ 
 
What was so special about the DEC-20: 
http://www.columbia.edu/cu/computinghistory/dec20.html 
 
What is a terminal? 
http://en.wikipedia.org/wiki/Computer_terminal 
 
Overview of Kermit protocol, software, and issues: 
http://www.kermitproject.org/kermit.html 
 
The Superbrain microcomputer: 
http://www.columbia.edu/cu/computinghistory/superbrain.html 
 
My old artifacts (p.8): 
http://www.columbia.edu/cu/computinghistory/books/ 
 
Marvin Herzog, Yiddish Encyclopedia: 
http://forward.com/articles/179799/mikhl-herzog-columbia-professor-and-yiddishist-die/ 
 
International Postal Addressing: 
http://www.columbia.edu/~fdc/postal/ 
 
Kermit Bibliography: 
http://www.kermitproject.org/biblio.html 
 
The historical Kermit software archive: 
http://www.columbia.edu/kermit/archive/ 
 
1994 Brazilian Election: 
http://www.kermitproject.org/newsn6.html 
http://www.kermitproject.org/kn6_cover.html (photo) 
 
Character set conversions in Kermit: 
http://www.kermitproject.org/csetnames.html 
 
Moscow Kermit Conference: 
http://www.columbia.edu/cu/computinghistory/ussr/ 
 
Ocean floats for studying hurricanes: 
http://www.kermitproject.org/em-apex.html 
 
MS-DOS Kermit: 
http://www.kermitproject.org/mskermit.html 



Kermit Oral History Panel 
Jeffrey Altman, Bill Catchings, and Frank da Cruz 

CHM Ref: X6479.2012                 © 2012 Computer History Museum                             Page 57 of 57 
 

Kermit 95: 
http://www.kermitproject.org/k95.html 
 
C-Kermit: 
http://www.kermitproject.org/ckermit.html 
 
E-Kermit: 
http://www.kermitproject.org/ek.html 
 
IBM Mainframe Kermit: 
http://www.kermitproject.org/k370.html 
 
Bill Catchings' company: 
http://www.principledtechnologies.com/ 
 
Jeff Altman's companies: 
http://www.secure-endpoints.com/ 
http://www.your-file-system.com/ 
 
Joe Doupnik: 
http://support.novell.com/community/volunteers/1joed.html 
 


